BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35179093)

  • 1. Sources, purification, immobilization and industrial applications of microbial lipases: An overview.
    Enespa ; Chandra P; Singh DP
    Crit Rev Food Sci Nutr; 2023; 63(24):6653-6686. PubMed ID: 35179093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions.
    Rodrigues RC; Virgen-Ortíz JJ; Dos Santos JCS; Berenguer-Murcia Á; Alcantara AR; Barbosa O; Ortiz C; Fernandez-Lafuente R
    Biotechnol Adv; 2019; 37(5):746-770. PubMed ID: 30974154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial lipases and their industrial applications: a comprehensive review.
    Chandra P; Enespa ; Singh R; Arora PK
    Microb Cell Fact; 2020 Aug; 19(1):169. PubMed ID: 32847584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of lipases by selective adsorption on hydrophobic supports.
    Fernandez-Lafuente R; Armisén P; Sabuquillo P; Fernández-Lorente G; Guisán JM
    Chem Phys Lipids; 1998 Jun; 93(1-2):185-97. PubMed ID: 9720258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of Lipases by Adsorption on Hydrophobic Supports: Modulation of Enzyme Properties in Biotransformations in Anhydrous Media.
    Fernandez-Lorente G; Rocha-Martín J; Guisan JM
    Methods Mol Biol; 2020; 2100():143-158. PubMed ID: 31939121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of Lipases on Heterofunctional Octyl-Glyoxyl Agarose Supports: Improved Stability and Prevention of the Enzyme Desorption.
    Rueda N; Dos Santos JC; Torres R; Ortiz C; Barbosa O; Fernandez-Lafuente R
    Methods Enzymol; 2016; 571():73-85. PubMed ID: 27112395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases.
    Palomo JM; Peñas MM; Fernández-Lorente G; Mateo C; Pisabarro AG; Fernández-Lafuente R; Ramírez L; Guisán JM
    Biomacromolecules; 2003; 4(2):204-10. PubMed ID: 12625713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilized lipase from Candida sp. 99-125 on hydrophobic silicate: characterization and applications.
    Zhao B; Liu X; Jiang Y; Zhou L; He Y; Gao J
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1802-14. PubMed ID: 24879595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications.
    Ismail AR; Kashtoh H; Baek KH
    Int J Biol Macromol; 2021 Sep; 187():127-142. PubMed ID: 34298046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilized lipases-based nano-biocatalytic systems - A versatile platform with incredible biotechnological potential.
    Bilal M; Fernandes CD; Mehmood T; Nadeem F; Tabassam Q; Ferreira LFR
    Int J Biol Macromol; 2021 Apr; 175():108-122. PubMed ID: 33548312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of Lipase from Penicillium sp. Section Gracilenta (CBMAI 1583) on Different Hydrophobic Supports: Modulation of Functional Properties.
    Turati DF; Morais Júnior WG; Terrasan CR; Moreno-Perez S; Pessela BC; Fernandez-Lorente G; Guisan JM; Carmona EC
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28241445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Industrial applications of fungal lipases: a review.
    Kumar A; Verma V; Dubey VK; Srivastava A; Garg SK; Singh VP; Arora PK
    Front Microbiol; 2023; 14():1142536. PubMed ID: 37187537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical treatments for modification and immobilization to improve the solvent-stability of lipase.
    Matsumoto T; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Nov; 35(12):193. PubMed ID: 31773289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protic ionic liquid as additive on lipase immobilization using silica sol-gel.
    de Souza RL; de Faria EL; Figueiredo RT; Freitas Ldos S; Iglesias M; Mattedi S; Zanin GM; dos Santos OA; Coutinho JA; Lima ÁS; Soares CM
    Enzyme Microb Technol; 2013 Mar; 52(3):141-50. PubMed ID: 23410924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of lipases and assay in continuous fixed bed reactor.
    dos Reis-Costa L; Soares AM; França SC; Trevisan HC; Roberts TJ
    Protein Pept Lett; 2003 Dec; 10(6):619-28. PubMed ID: 14683514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipase immobilization on ceramic supports: An overview on techniques and materials.
    Mulinari J; Oliveira JV; Hotza D
    Biotechnol Adv; 2020; 42():107581. PubMed ID: 32590050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipases: sources, immobilization methods, and industrial applications.
    Filho DG; Silva AG; Guidini CZ
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7399-7423. PubMed ID: 31375880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Aspergillus sp. lipase immobilization for the application in organic synthesis.
    Gricajeva A; Kazlauskas S; Kalėdienė L; Bendikienė V
    Int J Biol Macromol; 2018 Mar; 108():1165-1175. PubMed ID: 29113890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of lipases on hydrophobic supports involves the open form of the enzyme.
    Manoel EA; Dos Santos JC; Freire DM; Rueda N; Fernandez-Lafuente R
    Enzyme Microb Technol; 2015 Apr; 71():53-7. PubMed ID: 25765310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodiesel production with immobilized lipase: A review.
    Tan T; Lu J; Nie K; Deng L; Wang F
    Biotechnol Adv; 2010; 28(5):628-34. PubMed ID: 20580809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.