BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 35179490)

  • 1. The transcription factor Xrp1 orchestrates both reduced translation and cell competition upon defective ribosome assembly or function.
    Kiparaki M; Khan C; Folgado-Marco V; Chuen J; Moulos P; Baker NE
    Elife; 2022 Feb; 11():. PubMed ID: 35179490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of C/EBP class bZip proteins in the growth and cell competition of
    Blanco J; Cooper JC; Baker NE
    Elife; 2020 Jan; 9():. PubMed ID: 31909714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transcription factor Xrp1 is required for PERK-mediated antioxidant gene induction in
    Brown B; Mitra S; Roach FD; Vasudevan D; Ryoo HD
    Elife; 2021 Oct; 10():. PubMed ID: 34605405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell competition is driven by Xrp1-mediated phosphorylation of eukaryotic initiation factor 2α.
    Ochi N; Nakamura M; Nagata R; Wakasa N; Nakano R; Igaki T
    PLoS Genet; 2021 Dec; 17(12):e1009958. PubMed ID: 34871307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Regulatory Response to Ribosomal Protein Mutations Controls Translation, Growth, and Cell Competition.
    Lee CH; Kiparaki M; Blanco J; Folgado V; Ji Z; Kumar A; Rimesso G; Baker NE
    Dev Cell; 2018 Aug; 46(4):456-469.e4. PubMed ID: 30078730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal protein mutations and cell competition: autonomous and nonautonomous effects on a stress response.
    Kiparaki M; Baker NE
    Genetics; 2023 Jul; 224(3):. PubMed ID: 37267156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CRL4 E3 ligase Mahjong/DCAF1 controls cell competition through the transcription factor Xrp1, independently of polarity genes.
    Kumar A; Baker NE
    Development; 2022 Nov; 149(22):. PubMed ID: 36278853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xrp1 and Irbp18 trigger a feed-forward loop of proteotoxic stress to induce the loser status.
    Langton PF; Baumgartner ME; Logeay R; Piddini E
    PLoS Genet; 2021 Dec; 17(12):e1009946. PubMed ID: 34914692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drosophila RpS12 controls translation, growth, and cell competition through Xrp1.
    Ji Z; Kiparaki M; Folgado V; Kumar A; Blanco J; Rimesso G; Chuen J; Liu Y; Zheng D; Baker NE
    PLoS Genet; 2019 Dec; 15(12):e1008513. PubMed ID: 31841522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xrp1 is a transcription factor required for cell competition-driven elimination of loser cells.
    Baillon L; Germani F; Rockel C; Hilchenbach J; Basler K
    Sci Rep; 2018 Dec; 8(1):17712. PubMed ID: 30531963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell competition: emerging signaling and unsolved questions.
    Nagata R; Igaki T
    FEBS Lett; 2024 Feb; 598(4):379-389. PubMed ID: 38351618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A potential link between p53, cell competition and ribosomopathy in mammals and in Drosophila.
    Baker NE; Kiparaki M; Khan C
    Dev Biol; 2019 Feb; 446(1):17-19. PubMed ID: 30513308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell competition removes segmental aneuploid cells from
    Ji Z; Chuen J; Kiparaki M; Baker N
    Elife; 2021 Apr; 10():. PubMed ID: 33847264
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Mallik M; Catinozzi M; Hug CB; Zhang L; Wagner M; Bussmann J; Bittern J; Mersmann S; Klämbt C; Drexler HCA; Huynen MA; Vaquerizas JM; Storkebaum E
    J Cell Biol; 2018 Nov; 217(11):3947-3964. PubMed ID: 30209068
    [No Abstract]   [Full Text] [Related]  

  • 15. Uncoupling stress granule assembly and translation initiation inhibition.
    Mokas S; Mills JR; Garreau C; Fournier MJ; Robert F; Arya P; Kaufman RJ; Pelletier J; Mazroui R
    Mol Biol Cell; 2009 Jun; 20(11):2673-83. PubMed ID: 19369421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ectopic antenna induction by overexpression of CG17836/Xrp1 encoding an AT-hook DNA binding motif protein in Drosophila.
    Tsurui-Nishimura N; Nguyen TQ; Katsuyama T; Minami T; Furuhashi H; Oshima Y; Kurata S
    Biosci Biotechnol Biochem; 2013; 77(2):339-44. PubMed ID: 23391928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of translation initiation by amino acids in eukaryotic cells.
    Kimball SR
    Prog Mol Subcell Biol; 2001; 26():155-84. PubMed ID: 11575165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating eIF6 levels unveils the role of translation in ecdysone biosynthesis during Drosophila development.
    Russo A; Gatti G; Alfieri R; Pesce E; Soanes K; Ricciardi S; Mancino M; Cheroni C; Vaccari T; Biffo S; Calamita P
    Dev Biol; 2019 Nov; 455(1):100-111. PubMed ID: 31283922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of Paip1 causes translation reduction and induces apoptotic cell death through ISR activation and Xrp1.
    Xue M; Cong F; Zheng W; Xu R; Liu X; Bao H; Sung YY; Xi Y; He F; Ma J; Yang X; Ge W
    Cell Death Discov; 2023 Aug; 9(1):288. PubMed ID: 37543696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell autonomous and non-autonomous consequences of deviations in translation machinery on organism growth and the connecting signalling pathways.
    Surya A; Sarinay-Cenik E
    Open Biol; 2022 Apr; 12(4):210308. PubMed ID: 35472285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.