These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 35179504)

  • 1. The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study.
    Xiao J; Mo M; Wang Z; Zhou C; Shen J; Yuan J; He Y; Zheng Y
    JMIR Med Inform; 2022 Feb; 10(2):e33440. PubMed ID: 35179504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study.
    Yang X; Qiu H; Wang L; Wang X
    J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma.
    Wang D; Pan B; Huang JC; Chen Q; Cui SP; Lang R; Lyu SC
    Front Oncol; 2023; 13():1106029. PubMed ID: 37007095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application value of machine learning algorithms for predicting recurrence after resection of early-stage hepatocellular carcinoma].
    Ji GW; Wang K; Xia YX; Li XC; Wang XH
    Zhonghua Wai Ke Za Zhi; 2021 Aug; 59(8):679-685. PubMed ID: 34192861
    [No Abstract]   [Full Text] [Related]  

  • 5. Machine Learning Models for Predicting Stroke Mortality in Malaysia: An Application and Comparative Analysis.
    Che Nawi CMNH; Mohd Hairon S; Wan Yahya WNN; Wan Zaidi WA; Musa KI
    Cureus; 2023 Dec; 15(12):e50426. PubMed ID: 38222138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Which model is better in predicting the survival of laryngeal squamous cell carcinoma?: Comparison of the random survival forest based on machine learning algorithms to Cox regression: analyses based on SEER database.
    Sun H; Wu S; Li S; Jiang X
    Medicine (Baltimore); 2023 Mar; 102(10):e33144. PubMed ID: 36897699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning models for predicting the survival of patients with hepatocellular carcinoma based on a surveillance, epidemiology, and end results (SEER) database analysis.
    Wang S; Shao M; Fu Y; Zhao R; Xing Y; Zhang L; Xu Y
    Sci Rep; 2024 Jun; 14(1):13232. PubMed ID: 38853169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of time-to-event machine learning models in predicting oral cavity cancer prognosis.
    Adeoye J; Hui L; Koohi-Moghadam M; Tan JY; Choi SW; Thomson P
    Int J Med Inform; 2022 Jan; 157():104635. PubMed ID: 34800847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prognosis prediction of extremity and trunk wall soft-tissue sarcomas treated with surgical resection with radiomic analysis based on random survival forest.
    Yang Y; Ma X; Wang Y; Ding X
    Updates Surg; 2022 Feb; 74(1):355-365. PubMed ID: 34003477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison Study of Machine Learning (Random Survival Forest) and Classic Statistic (Cox Proportional Hazards) for Predicting Progression in High-Grade Glioma after Proton and Carbon Ion Radiotherapy.
    Qiu X; Gao J; Yang J; Hu J; Hu W; Kong L; Lu JJ
    Front Oncol; 2020; 10():551420. PubMed ID: 33194609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prognosis prediction for glioblastoma multiforme patients using machine learning approaches: Development of the clinically applicable model.
    Kim Y; Kim KH; Park J; Yoon HI; Sung W
    Radiother Oncol; 2023 Jun; 183():109617. PubMed ID: 36921767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of survival support vector machine combined with random survival forest to predict the survival of nasopharyngeal carcinoma patients.
    Xiao Z; Song Q; Wei Y; Fu Y; Huang D; Huang C
    Transl Cancer Res; 2023 Dec; 12(12):3581-3590. PubMed ID: 38192980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of a prediction model based on random survival forest for the prognosis of non- Hodgkin lymphoma: A prospective cohort study in China.
    Li X; Yang Z; Li J; Wang G; Sun A; Wang Y; Zhang W; Liu Y; Lei H
    Heliyon; 2024 Jun; 10(12):e32788. PubMed ID: 39022101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning-Based Prognostic Model for Patients After Lung Transplantation.
    Tian D; Yan HJ; Huang H; Zuo YJ; Liu MZ; Zhao J; Wu B; Shi LZ; Chen JY
    JAMA Netw Open; 2023 May; 6(5):e2312022. PubMed ID: 37145595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Did Not Outperform Conventional Competing Risk Modeling to Predict Revision Arthroplasty.
    Oosterhoff JHF; de Hond AAH; Peters RM; van Steenbergen LN; Sorel JC; Zijlstra WP; Poolman RW; Ring D; Jutte PC; Kerkhoffs GMMJ; Putter H; Steyerberg EW; Doornberg JN;
    Clin Orthop Relat Res; 2024 Aug; 482(8):1472-1482. PubMed ID: 38470976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival prediction in second primary breast cancer patients with machine learning: An analysis of SEER database.
    Wu Y; Zhang Y; Duan S; Gu C; Wei C; Fang Y
    Comput Methods Programs Biomed; 2024 Sep; 254():108310. PubMed ID: 38996803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis.
    Yan L; Gao N; Ai F; Zhao Y; Kang Y; Chen J; Weng Y
    Front Oncol; 2022; 12():967758. PubMed ID: 36072795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of lung papillary adenocarcinoma-specific survival using ensemble machine learning models.
    Xia K; Chen D; Jin S; Yi X; Luo L
    Sci Rep; 2023 Sep; 13(1):14827. PubMed ID: 37684259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. International Validation of the SORG Machine-learning Algorithm for Predicting the Survival of Patients with Extremity Metastases Undergoing Surgical Treatment.
    Tseng TE; Lee CC; Yen HK; Groot OQ; Hou CH; Lin SY; Bongers MER; Hu MH; Karhade AV; Ko JC; Lai YH; Yang JJ; Verlaan JJ; Yang RS; Schwab JH; Lin WH
    Clin Orthop Relat Res; 2022 Feb; 480(2):367-378. PubMed ID: 34491920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning-based overall and cancer-specific survival prediction of M0 penile squamous cell carcinomaļ¼šA population-based retrospective study.
    Chen D; Liang S; Chen J; Li K; Mi H
    Heliyon; 2024 Jan; 10(1):e23442. PubMed ID: 38163093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.