These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35179553)

  • 1. Matching convolved images to optically blurred images on the retina.
    Aissati S; Benedi-Garcia C; Vinas M; de Castro A; Marcos S
    J Vis; 2022 Feb; 22(2):12. PubMed ID: 35179553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vision is protected against blue defocus.
    Benedi-Garcia C; Vinas M; Dorronsoro C; Burns SA; Peli E; Marcos S
    Sci Rep; 2021 Jan; 11(1):352. PubMed ID: 33432060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VioBio lab adaptive optics: technology and applications by women vision scientists.
    Marcos S; Benedí-García C; Aissati S; Gonzalez-Ramos AM; Lago CM; Radhkrishnan A; Romero M; Vedhakrishnan S; Sawides L; Vinas M
    Ophthalmic Physiol Opt; 2020 Mar; 40(2):75-87. PubMed ID: 32147855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human eyes do not need monochromatic aberrations for dynamic accommodation.
    Bernal-Molina P; Marín-Franch I; Del Águila-Carrasco AJ; Esteve-Taboada JJ; López-Gil N; Kruger PB; Montés-Micó R
    Ophthalmic Physiol Opt; 2017 Sep; 37(5):602-609. PubMed ID: 28681436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for simulation of foveal vision during wear of corrective lenses.
    Legras R; Chateau N; Charman WN
    Optom Vis Sci; 2004 Sep; 81(9):729-38. PubMed ID: 15365393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive optics retinal imaging with automatic detection of the pupil and its boundary in real time using Shack-Hartmann images.
    de Castro A; Sawides L; Qi X; Burns SA
    Appl Opt; 2017 Aug; 56(24):6748-6754. PubMed ID: 29048013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of subjective image focus on the magnitude and pattern of high order aberrations.
    Sawides L; Dorronsoro C; de Gracia P; Vinas M; Webster M; Marcos S
    J Vis; 2012 Aug; 12(8):4. PubMed ID: 22872776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adapting to blur produced by ocular high-order aberrations.
    Sawides L; de Gracia P; Dorronsoro C; Webster M; Marcos S
    J Vis; 2011 Jun; 11(7):. PubMed ID: 21712375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of optical and non-optical blur to variation in visual acuity.
    McAnany JJ; Shahidi M; Applegate RA; Zelkha R; Alexander KR
    Optom Vis Sci; 2011 Jun; 88(6):716-23. PubMed ID: 21460756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual performance after correcting the monochromatic and chromatic aberrations of the eye.
    Yoon GY; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 2002 Feb; 19(2):266-75. PubMed ID: 11822589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light.
    Schwarz C; Cánovas C; Manzanera S; Weeber H; Prieto PM; Piers P; Artal P
    J Vis; 2014 Feb; 14(2):. PubMed ID: 24520150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive optics for vision: the eye's adaptation to point spread function.
    Artal P; Chen L; Fernández EJ; Singer B; Manzanera S; Williams DR
    J Refract Surg; 2003; 19(5):S585-7. PubMed ID: 14518748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The wide-angle point spread function of the human eye reconstructed by a new optical method.
    Ginis H; Pérez GM; Bueno JM; Artal P
    J Vis; 2012 Mar; 12(3):. PubMed ID: 22451158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of longitudinal chromatic aberration on through-focus visual acuity.
    Suchkov N; Fernández EJ; Artal P
    Opt Express; 2019 Nov; 27(24):35935-35947. PubMed ID: 31878758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Quantitative assessment of quality of vision].
    Oshika T
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):770-807; discussion 808. PubMed ID: 15656087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical aberrations in the mouse eye.
    de la Cera EG; Rodríguez G; Llorente L; Schaeffel F; Marcos S
    Vision Res; 2006 Aug; 46(16):2546-53. PubMed ID: 16516259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement and prediction of subjective gradations of images in presence of monochromatic aberrations.
    Legras R; Benard Y
    Vision Res; 2013 Jun; 86():52-8. PubMed ID: 23624229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imperfect optics may be the eye's defence against chromatic blur.
    McLellan JS; Marcos S; Prieto PM; Burns SA
    Nature; 2002 May; 417(6885):174-6. PubMed ID: 12000960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of age, decentration, aberrations and pupil size on subjective image quality with concentric bifocal optics.
    Rio D; Woog K; Legras R
    Ophthalmic Physiol Opt; 2016 Jul; 36(4):411-20. PubMed ID: 27196105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ocular aberrations up to the infrared range: from 632.8 to 1070 nm.
    Fernández EJ; Artal P
    Opt Express; 2008 Dec; 16(26):21199-208. PubMed ID: 19104549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.