These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35179787)

  • 1. Two-stage particle separation channel based on standing surface acoustic wave.
    Lv H; Chen X; Zhang Y; Wang X; Zeng X; Zhang D
    J Microsc; 2022 Apr; 286(1):42-54. PubMed ID: 35179787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle separation in microfluidics using different modal ultrasonic standing waves.
    Zhang Y; Chen X
    Ultrason Sonochem; 2021 Jul; 75():105603. PubMed ID: 34044322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers.
    Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y
    Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.
    Sachs S; Baloochi M; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave.
    Liu X; Zheng T; Wang C
    Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications.
    Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V
    Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sheathless size-based acoustic particle separation.
    Guldiken R; Jo MC; Gallant ND; Demirci U; Zhe J
    Sensors (Basel); 2012; 12(1):905-22. PubMed ID: 22368502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffraction-based acoustic manipulation in microchannels enables continuous particle and bacteria focusing.
    Devendran C; Choi K; Han J; Ai Y; Neild A; Collins DJ
    Lab Chip; 2020 Aug; 20(15):2674-2688. PubMed ID: 32608464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves.
    Ai Y; Sanders CK; Marrone BL
    Anal Chem; 2013 Oct; 85(19):9126-34. PubMed ID: 23968497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of two surface acoustic wave sorting chips on particles multi-level sorting.
    Liu G; He F; Li Y; Zhao H; Li X; Tang H; Li Z; Yang Z; Zhang Y
    Biomed Microdevices; 2019 Jun; 21(3):59. PubMed ID: 31227912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics.
    Chen C; Zhang SP; Mao Z; Nama N; Gu Y; Huang PH; Jing Y; Guo X; Costanzo F; Huang TJ
    Lab Chip; 2018 Dec; 18(23):3645-3654. PubMed ID: 30361727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and simulation of a microfluidic device for acoustic cell separation.
    Shamloo A; Boodaghi M
    Ultrasonics; 2018 Mar; 84():234-243. PubMed ID: 29175517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip.
    Han J; Hu H; Lei Y; Huang Q; Fu C; Gai C; Ning J
    ACS Omega; 2023 Jan; 8(1):311-323. PubMed ID: 36643460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers.
    Zhao S; Wu M; Yang S; Wu Y; Gu Y; Chen C; Ye J; Xie Z; Tian Z; Bachman H; Huang PH; Xia J; Zhang P; Zhang H; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1298-1308. PubMed ID: 32195522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels.
    Petersson F; Nilsson A; Holm C; Jonsson H; Laurell T
    Analyst; 2004 Oct; 129(10):938-43. PubMed ID: 15457327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces.
    Wu Y; Chattaraj R; Ren Y; Jiang H; Lee D
    Anal Chem; 2021 Jun; 93(21):7635-7646. PubMed ID: 34014074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.