These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35179813)

  • 1. Semiclassical Trajectory Studies of Reactive and Nonreactive Scattering of OH(A
    Han S; de Oliveira-Filho AGS; Shu Y; Truhlar DG; Guo H
    Chemphyschem; 2022 Apr; 23(8):e202200039. PubMed ID: 35179813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adiabatic states derived from a spin-coupled diabatic transformation: semiclassical trajectory study of photodissociation of HBr and the construction of potential curves for LiBr+.
    Valero R; Truhlar DG; Jasper AW
    J Phys Chem A; 2008 Jun; 112(25):5756-69. PubMed ID: 18529041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasiclassical trajectory study of the postquenching dynamics of OH A 2Σ+ by H2/D2 on a global potential energy surface.
    Fu B; Kamarchik E; Bowman JM
    J Chem Phys; 2010 Oct; 133(16):164306. PubMed ID: 21033787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonadiabatic Reactive Quenching of OH(
    Han S; Zhao B; Conte R; Malbon CL; Bowman JM; Yarkony DR; Guo H
    J Phys Chem A; 2022 Oct; 126(39):6944-6952. PubMed ID: 36137233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct diabatization and analytic representation of coupled potential energy surfaces and couplings for the reactive quenching of the excited
    Shu Y; Kryven J; Sampaio de Oliveira-Filho AG; Zhang L; Song GL; Li SL; Meana-Pañeda R; Fu B; Bowman JM; Truhlar DG
    J Chem Phys; 2019 Sep; 151(10):104311. PubMed ID: 31521070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the nonadiabatic collisional quenching of OH(A) by H
    Malbon CL; Zhao B; Guo H; Yarkony DR
    Phys Chem Chem Phys; 2020 Jun; 22(24):13516-13527. PubMed ID: 32538422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A diabatization method based upon integrating the diabatic potential gradient difference.
    Li F; Liu X; Ma H; Bian W
    Phys Chem Chem Phys; 2024 Jun; 26(23):16477-16487. PubMed ID: 38656815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonadiabatic Renner-Teller quantum dynamics of OH(X
    Gamallo P; Akpinar S; Defazio P; Petrongolo C
    Phys Chem Chem Phys; 2017 Feb; 19(6):4454-4461. PubMed ID: 28120967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Communications: Classical trajectory study of the postquenching dynamics of OH A 2Sigma+ by H2 initiated at conical intersections.
    Kamarchik E; Fu B; Bowman JM
    J Chem Phys; 2010 Mar; 132(9):091102. PubMed ID: 20210382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-dimensional three-state potential energy surfaces and state couplings for photodissociation of thiophenol.
    Zhang L; Truhlar DG; Sun S
    J Chem Phys; 2019 Oct; 151(15):154306. PubMed ID: 31640376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-adiabatic dynamics studies of the K(4p
    Li W; Wang X; Zhao H; He D
    Phys Chem Chem Phys; 2020 Jul; 22(28):16203-16214. PubMed ID: 32643736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quenching of OH(A(2)Sigma(+)) by H(2) through conical intersections: highly excited products in nonreactive channel.
    Zhang PY; Lu RF; Chu TS; Han KL
    J Phys Chem A; 2010 Jun; 114(24):6565-8. PubMed ID: 20499943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonadiabatic quantum reactive scattering of the OH(A  2Σ+) + D2.
    Zhang PY; Lu RF; Chu TS; Han KL
    J Chem Phys; 2010 Nov; 133(17):174316. PubMed ID: 21054041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-dimensional quantum stereodynamics of the non-adiabatic quenching of OH(A
    Zhao B; Han S; Malbon CL; Manthe U; Yarkony DR; Guo H
    Nat Chem; 2021 Sep; 13(9):909-915. PubMed ID: 34373597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permutationally Restrained Diabatization by Machine Intelligence.
    Shu Y; Varga Z; Sampaio de Oliveira-Filho AG; Truhlar DG
    J Chem Theory Comput; 2021 Feb; 17(2):1106-1116. PubMed ID: 33405927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-state diabatic potential energy surfaces of ClH
    Yin Z; Guan Y; Fu B; Zhang DH
    Phys Chem Chem Phys; 2019 Sep; 21(36):20372-20383. PubMed ID: 31498342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct calculation of coupled diabatic potential-energy surfaces for ammonia and mapping of a four-dimensional conical intersection seam.
    Nangia S; Truhlar DG
    J Chem Phys; 2006 Mar; 124(12):124309. PubMed ID: 16599676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiclassical Multistate Dynamics for Six Coupled
    Akher FB; Shu Y; Varga Z; Truhlar DG
    J Chem Theory Comput; 2023 Jul; 19(14):4389-4401. PubMed ID: 37441750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introductory lecture: nonadiabatic effects in chemical dynamics.
    Jasper AW; Zhu C; Nangia S; Truhlar DG
    Faraday Discuss; 2004; 127():1-22. PubMed ID: 15471336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A diabatic representation including both valence nonadiabatic interactions and spin-orbit effects for reaction dynamics.
    Valero R; Truhlar DG
    J Phys Chem A; 2007 Sep; 111(35):8536-51. PubMed ID: 17691756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.