These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35179823)

  • 1. Examination of thermoforming techniques to secure mouthguard thickness of the labial and buccal sides with a single sheet: An in vitro study.
    Takahashi M; Bando Y
    Dent Traumatol; 2022 Aug; 38(4):332-339. PubMed ID: 35179823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective thermoforming method for maintaining mouthguard thickness with a circular sheet using a circular frame.
    Takahashi M; Bando Y
    Dent Traumatol; 2022 Aug; 38(4):325-331. PubMed ID: 35276018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoforming technique for maintaining the thickness of single-layer mouthguard during pressure formation.
    Takahashi M; Bando Y
    Dent Traumatol; 2019 Oct; 35(4-5):285-290. PubMed ID: 30927555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sheet extrusion direction on laminated mouthguard thickness: An in vitro study.
    Takahashi M; Bando Y
    Dent Traumatol; 2022 Oct; 38(5):439-447. PubMed ID: 35608870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of vacuum forming techniques for reduction of loss in mouthguard thickness: part 2—effects of sheet grooving and thermal shrinkage.
    Takahashi M; Koide K; Mizuhashi F; Sato T
    Dent Traumatol; 2015 Aug; 31(4):314-7. PubMed ID: 25572017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoforming method to effectively maintain mouthguard thickness: Effect of moving the model position just before vacuum formation.
    Takahashi M; Bando Y
    Dent Traumatol; 2019 Apr; 35(2):121-127. PubMed ID: 30300475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of thermal shrinkage during thermoforming on the thickness of fabricated mouthguards: Part 2 pressure formation.
    Takahashi M; Satoh Y; Iwasaki SI
    Dent Traumatol; 2017 Apr; 33(2):106-109. PubMed ID: 27324048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of acute angle model on mouthguard thickness with the thermoforming method and moving the model position just before fabrication.
    Takahashi M; Bando Y
    Dent Traumatol; 2021 Feb; 37(1):138-144. PubMed ID: 32813927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in mouthguard thickness due to different heating conditions during fabrication.
    Takahashi M; Koide K; Mizuhashi F
    J Prosthodont Res; 2013 Jul; 57(3):179-85. PubMed ID: 23773377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in mouthguard thickness according to heating conditions during fabrication Part 2: sheet shape and effect of thermal shrinkage.
    Takahashi M; Koide K
    Dent Traumatol; 2016 Jun; 32(3):185-91. PubMed ID: 26337263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal heating condition of ethylene-vinyl acetate co-polymer mouthguard sheet in vacuum-pressure formation.
    Takahashi M; Koide K; Suzuki H; Iwasaki S
    Dent Traumatol; 2016 Aug; 32(4):311-5. PubMed ID: 26635146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in mouthguard thickness due to different heating conditions during fabrication: part 2.
    Takahashi M; Koide K; Mizuhashi F
    Dent Traumatol; 2015 Feb; 31(1):18-23. PubMed ID: 25039434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal heating condition of mouthguard sheet in vacuum-pressure formation: part 2 Olefin-based thermoplastic elastomer.
    Takahashi M; Koide K
    Dent Traumatol; 2016 Apr; 32(2):90-4. PubMed ID: 26341504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal heating condition of mouthguard sheet in vacuum-pressure formation: part 3 styrene-based thermoplastic elastomer.
    Takahashi M; Satoh Y; Iwasaki SI
    Dent Traumatol; 2016 Dec; 32(6):464-468. PubMed ID: 27059759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects on the thickness of single-layer mouthguards with different model positions on the forming table and different sheet frame shapes for the forming device.
    Takahashi M; Bando Y
    Dent Traumatol; 2022 Feb; 38(1):88-94. PubMed ID: 34197692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of continuous use of a vacuum-forming machine for mouthguard thickness after thermoforming.
    Takahashi M; Araie Y; Satoh Y; Iwasaki SI
    Dent Traumatol; 2017 Aug; 33(4):288-294. PubMed ID: 28296061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heating methods for reducing unevenness softening of mouthguard sheets in vacuum-pressure formation.
    Takahashi M; Koide K; Satoh Y; Iwasaki S
    Dent Traumatol; 2016 Aug; 32(4):316-20. PubMed ID: 26710213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication method to maintain mouthguard thickness regardless of the model angle.
    Takahashi M; Bando Y
    Dent Traumatol; 2021 Feb; 37(1):131-137. PubMed ID: 32590891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Difference in vacuum-formed mouthguard thickness according to heating condition.
    Mizuhashi F; Koide K; Takahashi M
    Dent Traumatol; 2015 Jun; 31(3):233-7. PubMed ID: 25351525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape change in mouthguard sheets during thermoforming - part 2: effect of the anteroposterior position of the model on mouthguard thickness.
    Takahashi M; Araie Y; Satoh Y; Iwasaki SI
    Dent Traumatol; 2017 Apr; 33(2):114-120. PubMed ID: 27960035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.