These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35179899)

  • 41. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spreading of liquid drops over porous substrates.
    Starov VM; Zhdanov SA; Kosvintsev SR; Sobolev VD; Velarde MG
    Adv Colloid Interface Sci; 2003 Jul; 104():123-58. PubMed ID: 12818493
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Droplet formation of biological non-Newtonian fluid in T-junction generators. I. Experimental investigation.
    Marcali M; Chen X; Aucoin MG; Ren CL
    Phys Rev E; 2022 Feb; 105(2-2):025105. PubMed ID: 35291127
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Passive Drip Stain Formation Dynamics of Blood onto Hard Surfaces and Comparison with Simple Fluids for Blood Substitute Development and Assessment.
    Stotesbury T; Taylor MC; Jermy MC
    J Forensic Sci; 2017 Jan; 62(1):74-82. PubMed ID: 27874180
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A numerical study on viscoelastic droplet migration on a solid substrate due to wettability gradient.
    Bai F; Li Y; Zhang H; Joo SW
    Electrophoresis; 2019 Mar; 40(6):851-858. PubMed ID: 30511773
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of a compound droplet on a flat surface: A model for single cell epitaxy.
    Tasoglu S; Kaynak G; Szeri AJ; Demirci U; Muradoglu M
    Phys Fluids (1994); 2010 Aug; 22(8):. PubMed ID: 20838481
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Droplet impact on cylindrical surfaces: Effects of surface wettability, initial impact velocity, and cylinder size.
    Wang Y; Wang Y; Wang S
    J Colloid Interface Sci; 2020 Oct; 578():207-217. PubMed ID: 32531551
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study on Droplet Impact and Spreading and Deposition Behavior of Harvest Aids on Cotton Leaves.
    Duan L; Fang Z; Han X; Dou Z; Liu Y; Wen M; Hou T; Yang D; Wang C; Zhang G
    Langmuir; 2022 Oct; 38(40):12248-12262. PubMed ID: 36170011
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of magnetic field on the spreading dynamics of an impinging ferrofluid droplet.
    Ahmed A; Qureshi AJ; Fleck BA; Waghmare PR
    J Colloid Interface Sci; 2018 Dec; 532():309-320. PubMed ID: 30096525
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrasonic atomization: effect of liquid phase properties.
    Avvaru B; Patil MN; Gogate PR; Pandit AB
    Ultrasonics; 2006 Feb; 44(2):146-58. PubMed ID: 16321416
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rayleigh-Bénard convection of a model emulsion: anomalous heat-flux fluctuations and finite-size droplet effects.
    Pelusi F; Sbragaglia M; Benzi R; Scagliarini A; Bernaschi M; Succi S
    Soft Matter; 2021 Apr; 17(13):3709-3721. PubMed ID: 33690767
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Triple-line behavior and wettability controlled by nanocoated substrates: influence on sessile drop evaporation.
    Sobac B; Brutin D
    Langmuir; 2011 Dec; 27(24):14999-5007. PubMed ID: 22054245
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental contribution to the understanding of the dynamics of spreading of Newtonian fluids: effect of volume, viscosity and surfactant.
    Roques-Carmes T; Mathieu V; Gigante A
    J Colloid Interface Sci; 2010 Apr; 344(1):180-97. PubMed ID: 20089256
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of Viscosity on Bouncing Dynamics of Elliptical Footprint Drops on Non-Wettable Ridged Surfaces.
    Yun S
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960845
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

  • 56. How different freezing morphologies of impacting droplets form.
    Fang WZ; Zhu F; Tao WQ; Yang C
    J Colloid Interface Sci; 2021 Feb; 584():403-410. PubMed ID: 33091865
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Moving Contact Line's Curvature on Dynamic Wetting of non-Newtonian Fluids.
    Wang X; Min Q; Zhang Z; Duan Y
    Langmuir; 2018 Dec; 34(50):15612-15620. PubMed ID: 30461284
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Post-Tanner spreading of nematic droplets.
    Mechkov S; Cazabat AM; Oshanin G
    J Phys Condens Matter; 2009 Nov; 21(46):464134. PubMed ID: 21715898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oscillation and recoil of single and consecutively printed droplets.
    Yang X; Chhasatia VH; Sun Y
    Langmuir; 2013 Feb; 29(7):2185-92. PubMed ID: 23360081
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interfacial Dynamics and Rheology of a Crude-Oil Droplet Oscillating in Water at a High Frequency.
    Abi Chebel N; Piedfert A; Lalanne B; Dalmazzone C; Noïk C; Masbernat O; Risso F
    Langmuir; 2019 Jul; 35(29):9441-9455. PubMed ID: 31257882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.