These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 35179966)
1. High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Han Y; Zhang J; Hu R; Xu D Sci Adv; 2022 Feb; 8(7):eabl5318. PubMed ID: 35179966 [TBL] [Abstract][Full Text] [Related]
2. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Duan J; Feng G; Yu B; Li J; Chen M; Yang P; Feng J; Liu K; Zhou J Nat Commun; 2018 Dec; 9(1):5146. PubMed ID: 30514952 [TBL] [Abstract][Full Text] [Related]
3. Boosting Thermogalvanic Cell Performance through Synergistic Redox and Thermogalvanic Corrosion. Fang W; Luo H; Mwakitawa IM; Yuan F; Lin X; Wang Y; Yang H; Shumilova T; Hu L; Zheng Y; Li C; Ouyang J; Sun K ChemSusChem; 2024 Oct; ():e202401749. PubMed ID: 39420741 [TBL] [Abstract][Full Text] [Related]
4. Stretchable and Durable Bacterial Cellulose-Based Thermocell with Improved Thermopower Density for Low-Grade Heat Harvesting. Wu Z; Wang B; Li J; Jia Y; Chen S; Wang H; Chen L; Shuai L Nano Lett; 2023 Nov; 23(22):10297-10304. PubMed ID: 37955657 [TBL] [Abstract][Full Text] [Related]
6. Recurrently gellable and thermochromic inorganic hydrogel thermogalvanic cells. Liu Y; Chen X; Dong X; Liu A; Ouyang K; Huang Y Sci Adv; 2024 Jul; 10(30):eadp4533. PubMed ID: 39058781 [TBL] [Abstract][Full Text] [Related]
7. Giant thermopower of ionic gelatin near room temperature. Han CG; Qian X; Li Q; Deng B; Zhu Y; Han Z; Zhang W; Wang W; Feng SP; Chen G; Liu W Science; 2020 Jun; 368(6495):1091-1098. PubMed ID: 32354840 [TBL] [Abstract][Full Text] [Related]
8. Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple. Taheri A; MacFarlane DR; Pozo-Gonzalo C; Pringle JM ChemSusChem; 2018 Aug; 11(16):2788-2796. PubMed ID: 29873193 [TBL] [Abstract][Full Text] [Related]
9. Giant and bidirectionally tunable thermopower in nonaqueous ionogels enabled by selective ion doping. Liu S; Yang Y; Huang H; Zheng J; Liu G; To TH; Huang B Sci Adv; 2022 Jan; 8(1):eabj3019. PubMed ID: 34985956 [TBL] [Abstract][Full Text] [Related]
10. Cellulose ionic conductor with tunable Seebeck coefficient for low-grade heat harvesting. Hu Y; Chen M; Qin C; Zhang J; Lu A Carbohydr Polym; 2022 Sep; 292():119650. PubMed ID: 35725205 [TBL] [Abstract][Full Text] [Related]
11. Thermally regenerative electrochemically cycled flow batteries with pH neutral electrolytes for harvesting low-grade heat. Qian X; Shin J; Tu Y; Zhang JH; Chen G Phys Chem Chem Phys; 2021 Oct; 23(39):22501-22514. PubMed ID: 34590664 [TBL] [Abstract][Full Text] [Related]
12. Strong Tough Thermogalvanic Hydrogel Thermocell With Extraordinarily High Thermoelectric Performance. Liu L; Zhang D; Bai P; Mao Y; Li Q; Guo J; Fang Y; Ma R Adv Mater; 2023 Aug; 35(32):e2300696. PubMed ID: 37222174 [TBL] [Abstract][Full Text] [Related]
13. Advanced Bacterial Cellulose Ionic Conductors with Gigantic Thermopower for Low-Grade Heat Harvesting. Wu Z; Wang B; Li J; Wu R; Jin M; Zhao H; Chen S; Wang H Nano Lett; 2022 Oct; 22(20):8152-8160. PubMed ID: 36219168 [TBL] [Abstract][Full Text] [Related]
14. Giant Negative Thermopower Enabled by Bidirectionally Anchored Cations in Multifunctional Polymers. Chen B; Zhang X; Yang J; Feng J; Wang T ACS Appl Mater Interfaces; 2023 May; 15(20):24483-24493. PubMed ID: 37161282 [TBL] [Abstract][Full Text] [Related]
15. Asymmetric Thermoelectrochemical Cell for Harvesting Low-grade Heat under Isothermal Operation. Mu K; Wang X; Ho Li K; Huang YT; Feng SP J Vis Exp; 2020 Feb; (156):. PubMed ID: 32091002 [TBL] [Abstract][Full Text] [Related]
16. Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells. Peng P; Zhou J; Liang L; Huang X; Lv H; Liu Z; Chen G Nanomicro Lett; 2022 Mar; 14(1):81. PubMed ID: 35333992 [TBL] [Abstract][Full Text] [Related]
17. Low-Grade Thermal Energy Harvesting and Self-Powered Sensing Based on Thermogalvanic Hydrogels. Zhang J; Bai C; Wang Z; Liu X; Li X; Cui X Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677217 [TBL] [Abstract][Full Text] [Related]
18. Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells. Li Z; Xu Y; Wu L; Cui J; Dou H; Zhang X Nat Commun; 2023 Oct; 14(1):6816. PubMed ID: 37884519 [TBL] [Abstract][Full Text] [Related]
19. Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixtures. Lazar MA; Al-Masri D; MacFarlane DR; Pringle JM Phys Chem Chem Phys; 2016 Jan; 18(3):1404-10. PubMed ID: 26348719 [TBL] [Abstract][Full Text] [Related]
20. Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy. Kim JH; Lee JH; Palem RR; Suh MS; Lee HH; Kang TJ Sci Rep; 2019 Jun; 9(1):8706. PubMed ID: 31213633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]