These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 35180586)

  • 1. Superoxide dismutase and catalase significantly improve the osteogenic differentiation potential of osteogenetically compromised human adipose tissue-derived stromal cells in vitro.
    Sahlender B; Windolf J; Suschek CV
    Stem Cell Res; 2022 Apr; 60():102708. PubMed ID: 35180586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Study of the Osteogenic Differentiation Potential of Adipose Tissue-Derived Stromal Cells and Dedifferentiated Adipose Cells of the Same Tissue Origin under Pro and Antioxidant Conditions.
    Bollmann A; Sons HC; Schiefer JL; Fuchs PC; Windolf J; Suschek CV
    Biomedicines; 2022 Nov; 10(12):. PubMed ID: 36551827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular- and microarray-based analysis of diversity among resting and osteogenically induced porcine mesenchymal stromal cells of several tissue origin.
    Bayraktar S; Jungbluth P; Deenen R; Grassmann J; Schneppendahl J; Eschbach D; Scholz A; Windolf J; Suschek CV; Grotheer V
    J Tissue Eng Regen Med; 2018 Jan; 12(1):114-128. PubMed ID: 27966263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of tibial regeneration in a rat model by adipose-derived stromal cells in a PLGA scaffold.
    Park BH; Zhou L; Jang KY; Park HS; Lim JM; Yoon SJ; Lee SY; Kim JR
    Bone; 2012 Sep; 51(3):313-23. PubMed ID: 22684001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteogenic Differentiation of Mesenchymal Stromal Cells: A Comparative Analysis Between Human Subcutaneous Adipose Tissue and Dental Pulp.
    D'Alimonte I; Mastrangelo F; Giuliani P; Pierdomenico L; Marchisio M; Zuccarini M; Di Iorio P; Quaresima R; Caciagli F; Ciccarelli R
    Stem Cells Dev; 2017 Jun; 26(11):843-855. PubMed ID: 28287912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 17β-estradiol differently affects osteogenic differentiation of mesenchymal stem/stromal cells from adipose tissue and bone marrow.
    Niada S; Giannasi C; Ferreira LM; Milani A; Arrigoni E; Brini AT
    Differentiation; 2016 Dec; 92(5):291-297. PubMed ID: 27087652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro and In Vivo Osteogenic Differentiation of Human Adipose-Derived Stromal Cells.
    Marshall CD; Brett EA; Moore AL; Wan DC; Longaker MT
    Methods Mol Biol; 2019; 1891():9-18. PubMed ID: 30414122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells.
    Kim KI; Park S; Im GI
    Biomaterials; 2014 Jun; 35(17):4792-804. PubMed ID: 24655782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweir JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downregulation of extracellular matrix-related gene clusters during osteogenic differentiation of human bone marrow- and adipose tissue-derived stromal cells.
    Egusa H; Iida K; Kobayashi M; Lin TY; Zhu M; Zuk PA; Wang CJ; Thakor DK; Hedrick MH; Nishimura I
    Tissue Eng; 2007 Oct; 13(10):2589-600. PubMed ID: 17666000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia Suppresses Spontaneous Mineralization and Osteogenic Differentiation of Mesenchymal Stem Cells via IGFBP3 Up-Regulation.
    Kim JH; Yoon SM; Song SU; Park SG; Kim WS; Park IG; Lee J; Sung JH
    Int J Mol Sci; 2016 Aug; 17(9):. PubMed ID: 27563882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification.
    Osinga R; Di Maggio N; Todorov A; Allafi N; Barbero A; Laurent F; Schaefer DJ; Martin I; Scherberich A
    Stem Cells Transl Med; 2016 Aug; 5(8):1090-7. PubMed ID: 27334490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of Cerium Oxide into Hydroxyapatite Coating Protects Bone Marrow Stromal Cells Against H
    Li K; Shen Q; Xie Y; You M; Huang L; Zheng X
    Biol Trace Elem Res; 2018 Mar; 182(1):91-104. PubMed ID: 28624869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of calvarial bone healing with human bone marrow stromal cells versus inhibition with adipose-tissue stromal cells on nanostructured β-TCP-collagen.
    Bothe F; Lotz B; Seebach E; Fischer J; Hesse E; Diederichs S; Richter W
    Acta Biomater; 2018 Aug; 76():135-145. PubMed ID: 29933108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells.
    Vidal MA; Kilroy GE; Lopez MJ; Johnson JR; Moore RM; Gimble JM
    Vet Surg; 2007 Oct; 36(7):613-22. PubMed ID: 17894587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IFN-gamma priming of adipose-derived stromal cells at "physiological" hypoxia.
    Andreeva ER; Udartseva OO; Zhidkova OV; Buravkov SV; Ezdakova MI; Buravkova LB
    J Cell Physiol; 2018 Feb; 233(2):1535-1547. PubMed ID: 28600879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic potential of adipose-derived stromal cells in age-related osteoporosis.
    Mirsaidi A; Genelin K; Vetsch JR; Stanger S; Theiss F; Lindtner RA; von Rechenberg B; Blauth M; Müller R; Kuhn GA; Hofmann Boss S; Ebner HL; Richards PJ
    Biomaterials; 2014 Aug; 35(26):7326-35. PubMed ID: 24933514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound-assisted liposuction provides a source for functional adipose-derived stromal cells.
    Duscher D; Maan ZN; Luan A; Aitzetmüller MM; Brett EA; Atashroo D; Whittam AJ; Hu MS; Walmsley GG; Houschyar KS; Schilling AF; Machens HG; Gurtner GC; Longaker MT; Wan DC
    Cytotherapy; 2017 Dec; 19(12):1491-1500. PubMed ID: 28917626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
    Guerrero J; Pigeot S; Müller J; Schaefer DJ; Martin I; Scherberich A
    Acta Biomater; 2018 Sep; 77():142-154. PubMed ID: 30126590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic potential of induced pluripotent stem cells from human adipose-derived stem cells.
    Mao SH; Chen CH; Chen CT
    Stem Cell Res Ther; 2019 Oct; 10(1):303. PubMed ID: 31623672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.