These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 35180648)
1. Engineering in-plane mechanics of electrospun polyurethane scaffolds for cardiovascular tissue applications. Luketich SK; Cosentino F; Di Giuseppe M; Menallo G; Nasello G; Livreri P; Wagner WR; D'Amore A J Mech Behav Biomed Mater; 2022 Apr; 128():105126. PubMed ID: 35180648 [TBL] [Abstract][Full Text] [Related]
2. From single fiber to macro-level mechanics: A structural finite-element model for elastomeric fibrous biomaterials. D'Amore A; Amoroso N; Gottardi R; Hobson C; Carruthers C; Watkins S; Wagner WR; Sacks MS J Mech Behav Biomed Mater; 2014 Nov; 39():146-61. PubMed ID: 25128869 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of elastomeric scaffolds with curvilinear fibrous structures for heart valve leaflet engineering. Hobson CM; Amoroso NJ; Amini R; Ungchusri E; Hong Y; D'Amore A; Sacks MS; Wagner WR J Biomed Mater Res A; 2015 Sep; 103(9):3101-6. PubMed ID: 25771748 [TBL] [Abstract][Full Text] [Related]
4. Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering. Amoroso NJ; D'Amore A; Hong Y; Rivera CP; Sacks MS; Wagner WR Acta Biomater; 2012 Dec; 8(12):4268-77. PubMed ID: 22890285 [TBL] [Abstract][Full Text] [Related]
5. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology. Trinca RB; Abraham GA; Felisberti MI Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():511-7. PubMed ID: 26249621 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites. Chan JP; Battiston KG; Santerre JP Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683 [TBL] [Abstract][Full Text] [Related]
7. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
9. Manipulating the structure and mechanical properties of thermoplastic polyurethane/polycaprolactone hybrid small diameter vascular scaffolds fabricated via electrospinning using an assembled rotating collector. Mi HY; Jing X; Yu E; Wang X; Li Q; Turng LS J Mech Behav Biomed Mater; 2018 Feb; 78():433-441. PubMed ID: 29227904 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Kucinska-Lipka J; Gubanska I; Janik H; Sienkiewicz M Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():166-76. PubMed ID: 25491973 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering. Wang H; Feng Y; An B; Zhang W; Sun M; Fang Z; Yuan W; Khan M J Mater Sci Mater Med; 2012 Jun; 23(6):1499-510. PubMed ID: 22430593 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of multilayer tubular scaffolds with aligned nanofibers to guide the growth of endothelial cells. Hu Q; Su C; Zeng Z; Zhang H; Feng R; Feng J; Li S J Biomater Appl; 2020; 35(4-5):553-566. PubMed ID: 32611277 [TBL] [Abstract][Full Text] [Related]
13. Fabrication, characterization, and in vitro evaluation of electrospun polyurethane-gelatin-carbon nanotube scaffolds for cardiovascular tissue engineering applications. Tondnevis F; Keshvari H; Mohandesi JA J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2276-2293. PubMed ID: 31967388 [TBL] [Abstract][Full Text] [Related]
14. Electrospun biphasic tubular scaffold with enhanced mechanical properties for vascular tissue engineering. Abdal-Hay A; Bartnikowski M; Hamlet S; Ivanovski S Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():10-18. PubMed ID: 29025637 [TBL] [Abstract][Full Text] [Related]
15. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold. Hong Y; Huber A; Takanari K; Amoroso NJ; Hashizume R; Badylak SF; Wagner WR Biomaterials; 2011 May; 32(13):3387-94. PubMed ID: 21303718 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of poly (ϵ-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications. Ko J; Mohtaram NK; Ahmed F; Montgomery A; Carlson M; Lee PC; Willerth SM; Jun MB J Biomater Sci Polym Ed; 2014; 25(1):1-17. PubMed ID: 23998440 [TBL] [Abstract][Full Text] [Related]
17. Blending Polymer Labile Elements at Differing Scales to Affect Degradation Profiles in Heart Valve Scaffolds. D'Amore A; Luketich SK; Hoff R; Ye SH; Wagner WR Biomacromolecules; 2019 Jul; 20(7):2494-2505. PubMed ID: 31083976 [TBL] [Abstract][Full Text] [Related]