BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35180710)

  • 1. Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface.
    Dong Y; Ding Y; Rui Z; Lian F; Hui W; Wu J; Wu Z; Yan P
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35180710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding the phonon transport of structural lubrication at silicon/silicon interface.
    Dong Y; Ding Y; Rui Z; Lian F; Tao Y; Hui W; Fu R
    Nanotechnology; 2023 Mar; 34(21):. PubMed ID: 36821852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phononic Origins of Friction in Carbon Nanotube Oscillators.
    Prasad MV; Bhattacharya B
    Nano Lett; 2017 Apr; 17(4):2131-2137. PubMed ID: 28234012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulating interfacial thermal conductance with commensurate-incommensurate transitions at atomic-scale silicon/silicon interfaces.
    Dong Y; Ding Y; Tao Y; Lian F; Hui W
    Nanoscale; 2024 Feb; 16(7):3738-3748. PubMed ID: 38294333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic structure causing an obvious difference in thermal conductance at the Pd-H
    Li S; Chen Y; Zhao J; Wang C; Wei N
    Nanoscale; 2020 Sep; 12(34):17870-17879. PubMed ID: 32840546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon dissipation in friction with commensurate-incommensurate transition between graphene membranes.
    Dong Y; Tao Y; Feng R; Zhang Y; Duan Z; Cao H
    Nanotechnology; 2020 Apr; 31(28):285711. PubMed ID: 32252042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-scale probing of heterointerface phonon bridges in nitride semiconductor.
    Li YH; Qi RS; Shi RC; Hu JN; Liu ZT; Sun YW; Li MQ; Li N; Song CL; Wang L; Hao ZB; Luo Y; Xue QK; Ma XC; Gao P
    Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35181607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon mechanism of angle-dependent superlubricity between black phosphorus layers.
    Dong Y; Hui W; Rui Z; Ding Y; Lian F; Tao Y
    Nanoscale; 2023 Sep; 15(34):14122-14130. PubMed ID: 37581537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of vibrational properties and electron-phonon coupling on thermal transport across metal-dielectric interfaces with ultrathin metallic interlayers.
    Oommen SM; Fallarino L; Heinze J; Hellwig O; Pisana S
    J Phys Condens Matter; 2022 Sep; 34(46):. PubMed ID: 36108621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms for enhancing interfacial phonon thermal transport by large-size nanostructures.
    Yin E; Li Q; Lian W
    Phys Chem Chem Phys; 2023 Feb; 25(5):3629-3638. PubMed ID: 36263751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental observation of localized interfacial phonon modes.
    Cheng Z; Li R; Yan X; Jernigan G; Shi J; Liao ME; Hines NJ; Gadre CA; Idrobo JC; Lee E; Hobart KD; Goorsky MS; Pan X; Luo T; Graham S
    Nat Commun; 2021 Nov; 12(1):6901. PubMed ID: 34824284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interfacial thermal conductance spectrum in nonequilibrium molecular dynamics simulations considering anharmonicity, asymmetry and quantum effects.
    Xu Y; Yang L; Zhou Y
    Phys Chem Chem Phys; 2022 Oct; 24(39):24503-24513. PubMed ID: 36193724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission.
    Zheng W; Huang B; Li H; Koh YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Si/Ge interfacial thermal conductance enhancement through Sn nanoparticle embedding.
    Liu YG; Li HX; Qiu YJ; Li X; Huang CP
    Phys Chem Chem Phys; 2023 Nov; 25(42):29080-29087. PubMed ID: 37861992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces.
    Lombard J; Detcheverry F; Merabia S
    J Phys Condens Matter; 2015 Jan; 27(1):015007. PubMed ID: 25425559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of contact atom distribution at the interface on the phonon transport.
    Liu C; Lu P; Gu Z; Yang J; Chen Y
    Phys Chem Chem Phys; 2020 Dec; 22(47):27690-27697. PubMed ID: 33241241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic-Scale Surface Engineering for Giant Thermal Transport Enhancement Across 2D/3D van der Waals Interfaces.
    Wang Q; Zhang J; Xiong Y; Li S; Chernysh V; Liu X
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3377-3386. PubMed ID: 36608269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of interfacial mode coupling of optical phonons on thermal boundary conductance.
    Giri A; Hopkins PE
    Sci Rep; 2017 Sep; 7(1):11011. PubMed ID: 28887443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.