BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35181080)

  • 1. Structural characterization and fluidness analysis of lactose/whey protein isolate composite hydrocolloids as printing materials for 3D printing.
    Fan F; Li S; Huang W; Ding J
    Food Res Int; 2022 Feb; 152():110908. PubMed ID: 35181080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing.
    Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ
    J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot extrusion 3D printing technologies based on starchy food: A review.
    Zhang J; Li Y; Cai Y; Ahmad I; Zhang A; Ding Y; Qiu Y; Zhang G; Tang W; Lyu F
    Carbohydr Polym; 2022 Oct; 294():119763. PubMed ID: 35868787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards the creation of personalized bakery products using 3D food printing.
    Zhang L; Noort M; van Bommel K
    Adv Food Nutr Res; 2022; 99():1-35. PubMed ID: 35595391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review.
    Pérez B; Nykvist H; Brøgger AF; Larsen MB; Falkeborg MF
    Food Chem; 2019 Jul; 287():249-257. PubMed ID: 30857696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elaboration of dimensional quality in 3D-printed food: Key factors in process steps.
    Wen Y; Che QT; Wang S; Park HJ; Kim HW
    Compr Rev Food Sci Food Saf; 2024 Jan; 23(1):e13267. PubMed ID: 38284586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of 3D printability of composite dairy matrix by correlating with its rheological properties.
    Joshi S; Sahu JK; Bareen MA; Prakash S; Bhandari B; Sharma N; Naik SN
    Food Res Int; 2021 Mar; 141():110111. PubMed ID: 33641978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printing of a high protein yoghurt-based gel: Effect of protein enrichment and gelatine on physical and sensory properties.
    Riantiningtyas RR; Sager VF; Chow CY; Thybo CD; Bredie WLP; Ahrné L
    Food Res Int; 2021 Sep; 147():110517. PubMed ID: 34399495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-D printed meat alternatives based on pea and single cell proteins and hydrocolloids: Effect of paste formulation on process-induced fibre alignment and structural and textural properties.
    Calton A; Lille M; Sozer N
    Food Res Int; 2023 Dec; 174(Pt 2):113633. PubMed ID: 37981359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation of Heat-Induced Whey Protein Gels for Extrusion-Based 3D Printing.
    Sager VF; Munk MB; Hansen MS; Bredie WLP; Ahrné L
    Foods; 2020 Dec; 10(1):. PubMed ID: 33375171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing of Materials and Printing Parameters with Animal Resources: A Review.
    Jeon EY; Kim Y; Yun HJ; Kim BK; Choi YS
    Food Sci Anim Resour; 2024 Mar; 44(2):225-238. PubMed ID: 38764513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Personalized nutrition with 3D-printed foods: A systematic review on the impact of different additives.
    Abedini A; Sohrabvandi S; Sadighara P; Hosseini H; Farhoodi M; Assadpour E; Alizadeh Sani M; Zhang F; Seyyedi-Mansour S; Jafari SM
    Adv Colloid Interface Sci; 2024 Jun; 328():103181. PubMed ID: 38749383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel evaluation technology for the demand characteristics of 3D food printing materials: a review.
    Jiang Q; Zhang M; Mujumdar AS
    Crit Rev Food Sci Nutr; 2022; 62(17):4669-4683. PubMed ID: 33523706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing.
    Ma T; Lv L; Ouyang C; Hu X; Liao X; Song Y; Hu X
    Carbohydr Polym; 2021 Feb; 253():117217. PubMed ID: 33278981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired 3D printable pectin-nanocellulose ink formulations.
    Cernencu AI; Lungu A; Stancu IC; Serafim A; Heggset E; Syverud K; Iovu H
    Carbohydr Polym; 2019 Sep; 220():12-21. PubMed ID: 31196530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of internal structure of mashed potato construct by 3D printing and its textural properties.
    Liu Z; Bhandari B; Prakash S; Zhang M
    Food Res Int; 2018 Sep; 111():534-543. PubMed ID: 30007716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards 3D printed multifunctional immobilization for proton therapy: Initial materials characterization.
    Michiels S; D'Hollander A; Lammens N; Kersemans M; Zhang G; Denis JM; Poels K; Sterpin E; Nuyts S; Haustermans K; Depuydt T
    Med Phys; 2016 Oct; 43(10):5392. PubMed ID: 27782703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Selected Product and Process Parameters on Microstructure, Rheological, and Textural Properties of 3D Printed Cookies.
    Varghese C; Wolodko J; Chen L; Doschak M; Srivastav PP; Roopesh MS
    Foods; 2020 Jul; 9(7):. PubMed ID: 32664254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks.
    Göhl J; Markstedt K; Mark A; Håkansson K; Gatenholm P; Edelvik F
    Biofabrication; 2018 Jun; 10(3):034105. PubMed ID: 29809162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.