BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35181361)

  • 1. Hormesis and insects: Effects and interactions in agroecosystems.
    Cutler GC; Amichot M; Benelli G; Guedes RNC; Qu Y; Rix RR; Ullah F; Desneux N
    Sci Total Environ; 2022 Jun; 825():153899. PubMed ID: 35181361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects.
    Rix RR; Cutler GC
    Sci Total Environ; 2022 Jun; 827():154085. PubMed ID: 35218848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insects, insecticides and hormesis: evidence and considerations for study.
    Cutler GC
    Dose Response; 2013; 11(2):154-77. PubMed ID: 23930099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Side-effects of pesticides on non-target insects in agriculture: a mini-review.
    Serrão JE; Plata-Rueda A; Martínez LC; Zanuncio JC
    Naturwissenschaften; 2022 Feb; 109(2):17. PubMed ID: 35138481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general model of hormesis in biological systems and its application to pest management.
    Tang S; Liang J; Xiang C; Xiao Y; Wang X; Wu J; Li G; Cheke RA
    J R Soc Interface; 2019 Aug; 16(157):20190468. PubMed ID: 31431187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecological risk assessment: implications of hormesis.
    van der Schalie WH; Gentile JH
    J Appl Toxicol; 2000; 20(2):131-9. PubMed ID: 10715611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landscape structure and climate drive population dynamics of an insect vector within intensely managed agroecosystems.
    Gutiérrez Illán J; Bloom EH; Wohleb CH; Wenninger EJ; Rondon SI; Jensen AS; Snyder WE; Crowder DW
    Ecol Appl; 2020 Jul; 30(5):e02109. PubMed ID: 32108396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental hormesis of non-specific and specific adaptive mechanisms in plants.
    Erofeeva EA
    Sci Total Environ; 2022 Jan; 804():150059. PubMed ID: 34508935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pest insect olfaction in an insecticide-contaminated environment: info-disruption or hormesis effect.
    Tricoire-Leignel H; Thany SH; Gadenne C; Anton S
    Front Physiol; 2012; 3():58. PubMed ID: 22457653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-protection interactions in insect pests: Implications for pest management in a changing climate.
    Bueno EM; McIlhenny CL; Chen YH
    Pest Manag Sci; 2023 Jan; 79(1):9-20. PubMed ID: 36127854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bt-induced hormesis in Bt-resistant insects: Theoretical possibility or factual concern?
    Campos SO; Santana IV; Silva C; Santos-Amaya OF; Guedes RNC; Pereira EJG
    Ecotoxicol Environ Saf; 2019 Nov; 183():109577. PubMed ID: 31446171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The implications of hormesis to ecotoxicology and ecological risk assessment.
    Chapman PM
    Hum Exp Toxicol; 2001 Oct; 20(10):499-505. PubMed ID: 11858510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending the vibroscape to agroecosystems: investigating the influence of abiotic factors and monitoring insect vibrational signaling.
    Akassou I; Zapponi L; Verrastro V; Ciolli M; Mazzoni V
    PeerJ; 2022; 10():e14143. PubMed ID: 36415862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anoxia hormesis following overwintering diapause boosts bee survivorship and adult performance.
    Cervantes L; López-Martínez G
    Sci Total Environ; 2022 Jan; 802():149934. PubMed ID: 34525715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-acetyltyrosine-induced redox signaling in hormesis.
    Hayakawa Y
    Biochim Biophys Acta Mol Cell Res; 2021 May; 1868(6):118990. PubMed ID: 33617888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Balancing Disturbance and Conservation in Agroecosystems to Improve Biological Control.
    Tooker JF; O'Neal ME; Rodriguez-Saona C
    Annu Rev Entomol; 2020 Jan; 65():81-100. PubMed ID: 31923378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops.
    Shackelford G; Steward PR; Benton TG; Kunin WE; Potts SG; Biesmeijer JC; Sait SM
    Biol Rev Camb Philos Soc; 2013 Nov; 88(4):1002-21. PubMed ID: 23578337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant-insect-microbe interaction: A love triangle between enemies in ecosystem.
    Noman A; Aqeel M; Qasim M; Haider I; Lou Y
    Sci Total Environ; 2020 Jan; 699():134181. PubMed ID: 31520944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unexpected effects of sublethal doses of insecticide on the peripheral olfactory response and sexual behavior in a pest insect.
    Lalouette L; Pottier MA; Wycke MA; Boitard C; Bozzolan F; Maria A; Demondion E; Chertemps T; Lucas P; Renault D; Maibeche M; Siaussat D
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3073-85. PubMed ID: 26686856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.