These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 35181492)
21. Lipoamino bundle LNPs for efficient mRNA transfection of dendritic cells and macrophages show high spleen selectivity. Haase F; Pöhmerer J; Yazdi M; Grau M; Zeyn Y; Wilk U; Burghardt T; Höhn M; Hieber C; Bros M; Wagner E; Berger S Eur J Pharm Biopharm; 2024 Jan; 194():95-109. PubMed ID: 38065313 [TBL] [Abstract][Full Text] [Related]
22. Biodistribution and Non-linear Gene Expression of mRNA LNPs Affected by Delivery Route and Particle Size. Di J; Du Z; Wu K; Jin S; Wang X; Li T; Xu Y Pharm Res; 2022 Jan; 39(1):105-114. PubMed ID: 35080707 [TBL] [Abstract][Full Text] [Related]
23. Arrayed CRISPR Screening Identifies Novel Targets That Enhance the Productive Delivery of mRNA by MC3-Based Lipid Nanoparticles. Ross-Thriepland D; Bornot A; Butler L; Desai A; Jaiswal H; Peel S; Hunter MR; Odunze U; Isherwood B; Gianni D SLAS Discov; 2020 Jul; 25(6):605-617. PubMed ID: 32441189 [TBL] [Abstract][Full Text] [Related]
24. Delivering mRNA to a human NK cell line, NK-92 cells, by lipid nanoparticles. Nakamura T; Nakade T; Sato Y; Harashima H Int J Pharm; 2023 Apr; 636():122810. PubMed ID: 36898618 [TBL] [Abstract][Full Text] [Related]
25. In situ T-cell transfection by anti-CD3-conjugated lipid nanoparticles leads to T-cell activation, migration, and phenotypic shift. Kheirolomoom A; Kare AJ; Ingham ES; Paulmurugan R; Robinson ER; Baikoghli M; Inayathullah M; Seo JW; Wang J; Fite BZ; Wu B; Tumbale SK; Raie MN; Cheng RH; Nichols L; Borowsky AD; Ferrara KW Biomaterials; 2022 Feb; 281():121339. PubMed ID: 35078042 [TBL] [Abstract][Full Text] [Related]
26. The mechanical properties of lipid nanoparticles depend on the type of biomacromolecule they are loaded with. de Chateauneuf-Randon S; Bresson B; Ripoll M; Huille S; Barthel E; Monteux C Nanoscale; 2024 Jun; 16(22):10706-10714. PubMed ID: 38700424 [TBL] [Abstract][Full Text] [Related]
27. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery. He Z; Hu Y; Nie T; Tang H; Zhu J; Chen K; Liu L; Leong KW; Chen Y; Mao HQ Acta Biomater; 2018 Nov; 81():195-207. PubMed ID: 30267888 [TBL] [Abstract][Full Text] [Related]
28. Engineering Lipid Nanoparticles for Enhanced Intracellular Delivery of mRNA through Inhalation. Kim J; Jozic A; Lin Y; Eygeris Y; Bloom E; Tan X; Acosta C; MacDonald KD; Welsher KD; Sahay G ACS Nano; 2022 Sep; 16(9):14792-14806. PubMed ID: 36038136 [TBL] [Abstract][Full Text] [Related]
29. The Biomolecular Corona of Lipid Nanoparticles for Gene Therapy. Francia V; Schiffelers RM; Cullis PR; Witzigmann D Bioconjug Chem; 2020 Sep; 31(9):2046-2059. PubMed ID: 32786370 [TBL] [Abstract][Full Text] [Related]
30. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. Patel S; Ryals RC; Weller KK; Pennesi ME; Sahay G J Control Release; 2019 Jun; 303():91-100. PubMed ID: 30986436 [TBL] [Abstract][Full Text] [Related]
31. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform. Bailey-Hytholt CM; Ghosh P; Dugas J; Zarraga IE; Bandekar A J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720139 [TBL] [Abstract][Full Text] [Related]
32. Taylor Dispersion Analysis to support lipid-nanoparticle formulations for mRNA vaccines. Malburet C; Leclercq L; Cotte JF; Thiebaud J; Bazin E; Garinot M; Cottet H Gene Ther; 2023 May; 30(5):421-428. PubMed ID: 36316446 [TBL] [Abstract][Full Text] [Related]