BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35181608)

  • 1. Reversible dougong structured receptor-ligand recognition for building dynamic extracellular matrix mimics.
    He W; Bai J; Chen X; Suo D; Wang S; Guo Q; Yin W; Geng D; Wang M; Pan G; Zhao X; Li B
    Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35181608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Synthetic Biointerfaces: From Reversible Chemical Interactions to Tunable Biological Effects.
    Ma Y; Tian X; Liu L; Pan J; Pan G
    Acc Chem Res; 2019 Jun; 52(6):1611-1622. PubMed ID: 30793586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-Laden Multiple-Step and Reversible 4D Hydrogel Actuators to Mimic Dynamic Tissue Morphogenesis.
    Ding A; Jeon O; Tang R; Lee YB; Lee SJ; Alsberg E
    Adv Sci (Weinh); 2021 May; 8(9):2004616. PubMed ID: 33977070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-engineered biomaterials: nanoscale mimics of the extracellular matrix.
    Romano NH; Sengupta D; Chung C; Heilshorn SC
    Biochim Biophys Acta; 2011 Mar; 1810(3):339-49. PubMed ID: 20647034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics.
    Yang B; Wei K; Loebel C; Zhang K; Feng Q; Li R; Wong SHD; Xu X; Lau C; Chen X; Zhao P; Yin C; Burdick JA; Wang Y; Bian L
    Nat Commun; 2021 Jun; 12(1):3514. PubMed ID: 34112772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.
    Lin T; Liu S; Chen S; Qiu S; Rao Z; Liu J; Zhu S; Yan L; Mao H; Zhu Q; Quan D; Liu X
    Acta Biomater; 2018 Jun; 73():326-338. PubMed ID: 29649641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile engineering of ECM-mimetic injectable dual crosslinking hydrogels with excellent mechanical resilience, tissue adhesion, and biocompatibility.
    Fu H; Yu C; Li X; Bao H; Zhang B; Chen Z; Zhang Z
    J Mater Chem B; 2021 Dec; 9(48):10003-10014. PubMed ID: 34874044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio Mimicking of Extracellular Matrix.
    Ghosh M; Halperin-Sternfeld M; Adler-Abramovich L
    Adv Exp Med Biol; 2019; 1174():371-399. PubMed ID: 31713206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects.
    He W; Wang Q; Tian X; Pan G
    Exploration (Beijing); 2022 Feb; 2(1):20210093. PubMed ID: 37324582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mimicking Extracellular Matrix via Engineered Nanostructured Biomaterials for Neural Repair.
    Raspa A; Gelain F
    Curr Neuropharmacol; 2021; 19(12):2110-2124. PubMed ID: 33176654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-instructive starPEG-heparin-collagen composite matrices.
    Binner M; Bray LJ; Friedrichs J; Freudenberg U; Tsurkan MV; Werner C
    Acta Biomater; 2017 Apr; 53():70-80. PubMed ID: 28216298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A trivalent system from vancomycin.D-ala-D-Ala with higher affinity than avidin.biotin.
    Rao J; Lahiri J; Isaacs L; Weis RM; Whitesides GM
    Science; 1998 May; 280(5364):708-11. PubMed ID: 9563940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rational strategy for enhancing the affinity of vancomycin towards depsipeptide ligands.
    Axelsen PH; Li D
    Bioorg Med Chem; 1998 Jul; 6(7):877-81. PubMed ID: 9730223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable Control in Extracellular Matrix-mimicking Polymer Hydrogels.
    Hof KS; Bastings MMC
    Chimia (Aarau); 2017 Jun; 71(6):342-348. PubMed ID: 28662736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic poly(γ-glutamic acid) hydrogels based on iron (III) ligand coordination for cartilage tissue engineering.
    Wang P; Zhang W; Yang R; Liu S; Ren Y; Liu X; Tan X; Chi B
    Int J Biol Macromol; 2021 Jan; 167():1508-1516. PubMed ID: 33212107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is extracellular matrix (ECM) a promising scaffold biomaterial for bone repair?
    Gu R; Liu H; Zhu Y; Liu X; Wang S; Liu Y
    Histol Histopathol; 2021 Dec; 36(12):1219-1234. PubMed ID: 34472621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ sequestration of endogenous PDGF-BB with an ECM-mimetic sponge for accelerated wound healing.
    Li Q; Niu Y; Diao H; Wang L; Chen X; Wang Y; Dong L; Wang C
    Biomaterials; 2017 Dec; 148():54-68. PubMed ID: 28964982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-organized ECM-mimetic model based on an amphiphilic multiblock silk-elastin-like corecombinamer with a concomitant dual physical gelation process.
    Fernández-Colino A; Arias FJ; Alonso M; Rodríguez-Cabello JC
    Biomacromolecules; 2014 Oct; 15(10):3781-93. PubMed ID: 25230341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun bioscaffolds that mimic the topology of extracellular matrix.
    Han D; Gouma PI
    Nanomedicine; 2006 Mar; 2(1):37-41. PubMed ID: 17292114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.