BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35182032)

  • 1. Understanding the Biological Interactions of pH-Swellable Nanoparticles.
    Kermaniyan SS; Chen M; Zhang C; Smith SA; Johnston APR; Such C; Such GK
    Macromol Biosci; 2022 May; 22(5):e2100445. PubMed ID: 35182032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-responsive cationic liposome for endosomal escape mediated drug delivery.
    Rayamajhi S; Marchitto J; Nguyen TDT; Marasini R; Celia C; Aryal S
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110804. PubMed ID: 31972443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives.
    Cupic KI; Rennick JJ; Johnston AP; Such GK
    Nanomedicine (Lond); 2019 Jan; 14(2):215-223. PubMed ID: 30511881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution Imaging of Proton Sponge-Triggered Rupture of Endosomes and Cytosolic Release of Small Interfering RNA.
    Wojnilowicz M; Glab A; Bertucci A; Caruso F; Cavalieri F
    ACS Nano; 2019 Jan; 13(1):187-202. PubMed ID: 30566836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the Endosomal Escape of pH-Responsive Nanoparticles Using the Split Luciferase Endosomal Escape Quantification Assay.
    Beach MA; Teo SLY; Chen MZ; Smith SA; Pouton CW; Johnston APR; Such GK
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3653-3661. PubMed ID: 34964593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endosomal Size and Membrane Leakiness Influence Proton Sponge-Based Rupture of Endosomal Vesicles.
    Vermeulen LMP; Brans T; Samal SK; Dubruel P; Demeester J; De Smedt SC; Remaut K; Braeckmans K
    ACS Nano; 2018 Mar; 12(3):2332-2345. PubMed ID: 29505236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing Endosomal Escape Using pHlexi Nanoparticles.
    Kongkatigumjorn N; Cortez-Jugo C; Czuba E; Wong AS; Hodgetts RY; Johnston AP; Such GK
    Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27786422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal monitoring endocytic and cytosolic pH gradients with endosomal escaping pH-responsive micellar nanocarriers.
    Hu J; Liu G; Wang C; Liu T; Zhang G; Liu S
    Biomacromolecules; 2014 Nov; 15(11):4293-301. PubMed ID: 25317967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembling dual component nanoparticles with endosomal escape capability.
    Wong AS; Mann SK; Czuba E; Sahut A; Liu H; Suekama TC; Bickerton T; Johnston AP; Such GK
    Soft Matter; 2015 Apr; 11(15):2993-3002. PubMed ID: 25731820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically Tuned Intracellular Gene Delivery by Core-Shell Nanoparticles: Effects of Proton Buffering, Acid Degradability, and Membrane Disruption.
    Cho SK; Lee RT; Hwang YH; Kwon YJ
    ChemMedChem; 2022 Apr; 17(7):e202100718. PubMed ID: 35060681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-responsive polyplexes with enhanced disassembly and endosomal escape for efficient delivery of siRNA.
    Zhu J; Qiao M; Wang Q; Ye Y; Ba S; Ma J; Hu H; Zhao X; Chen D
    Biomaterials; 2018 Apr; 162():47-59. PubMed ID: 29432988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Octaarginine- and octalysine-modified nanoparticles have different modes of endosomal escape.
    El-Sayed A; Khalil IA; Kogure K; Futaki S; Harashima H
    J Biol Chem; 2008 Aug; 283(34):23450-61. PubMed ID: 18550548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium Enabled Remote Loading of a Weak Acid Into pH-sensitive Liposomes and Augmented Cytosolic Delivery to Cancer Cells via the Proton Sponge Effect.
    Yang MM; Yarragudi SB; Jamieson SMF; Tang M; Wilson WR; Wu Z
    Pharm Res; 2022 Jun; 39(6):1181-1195. PubMed ID: 35229237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-Phenolic Coatings as a Platform to Trigger Endosomal Escape of Nanoparticles.
    Chen J; Li J; Zhou J; Lin Z; Cavalieri F; Czuba-Wojnilowicz E; Hu Y; Glab A; Ju Y; Richardson JJ; Caruso F
    ACS Nano; 2019 Oct; 13(10):11653-11664. PubMed ID: 31573181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pH-Triggered Triblock Nanocarrier Enabled Highly Efficient siRNA Delivery for Cancer Therapy.
    Du L; Zhou J; Meng L; Wang X; Wang C; Huang Y; Zheng S; Deng L; Cao H; Liang Z; Dong A; Cheng Q
    Theranostics; 2017; 7(14):3432-3445. PubMed ID: 28912886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery.
    Smith SA; Selby LI; Johnston APR; Such GK
    Bioconjug Chem; 2019 Feb; 30(2):263-272. PubMed ID: 30452233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysosomal Proton Buffering of Poly(ethylenimine) Measured
    Roy S; Zhu D; Parak WJ; Feliu N
    ACS Nano; 2020 Jul; 14(7):8012-8023. PubMed ID: 32568521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles.
    Ahmad A; Khan JM; Haque S
    Biochimie; 2019 May; 160():61-75. PubMed ID: 30797879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The possible "proton sponge " effect of polyethylenimine (PEI) does not include change in lysosomal pH.
    Benjaminsen RV; Mattebjerg MA; Henriksen JR; Moghimi SM; Andresen TL
    Mol Ther; 2013 Jan; 21(1):149-57. PubMed ID: 23032976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The proton sponge hypothesis: Fable or fact?
    Vermeulen LMP; De Smedt SC; Remaut K; Braeckmans K
    Eur J Pharm Biopharm; 2018 Aug; 129():184-190. PubMed ID: 29859281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.