BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35182055)

  • 1. Development of Whole Genome-Scale Base Editing Toolbox to Promote Efficiency of Extracellular Electron Transfer in Shewanella oneidensis MR-1.
    Chen Y; Fang L; Ying X; Cheng M; Wang L; Sun P; Zhang Z; Shi L; Cao Y; Song H
    Adv Biol (Weinh); 2022 Mar; 6(3):e2101296. PubMed ID: 35182055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing a PAM-Flexible CRISPR-Mediated Dual-Deaminase Base Editor to Regulate Extracellular Electron Transport in
    Wang T; Zhang J; Wei L; Zhao D; Bi C; Liu Q; Xu N; Liu J
    ACS Synth Biol; 2023 Jun; 12(6):1727-1738. PubMed ID: 37212667
    [No Abstract]   [Full Text] [Related]  

  • 3. Developing a base-editing system to expand the carbon source utilization spectra of Shewanella oneidensis MR-1 for enhanced pollutant degradation.
    Cheng L; Min D; He RL; Cheng ZH; Liu DF; Yu HQ
    Biotechnol Bioeng; 2020 Aug; 117(8):2389-2400. PubMed ID: 32356906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Enhancement of Extracellular Electron Transfer in
    Lin WQ; Cheng ZH; Wu QZ; Liu JQ; Liu DF; Sheng GP
    ACS Synth Biol; 2024 Jun; 13(6):1941-1951. PubMed ID: 38780992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis.
    Cao Y; Li X; Li F; Song H
    ACS Synth Biol; 2017 Sep; 6(9):1679-1690. PubMed ID: 28616968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Editing by CRISPR/Cas12 Recognizing AT-Rich PAMs in
    Chen Y; Cheng M; Feng X; Niu X; Song H; Cao Y
    ACS Synth Biol; 2022 Sep; 11(9):2947-2955. PubMed ID: 36048424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient multiplex base editing: One-shot deactivation of eight genes in
    Chen Y; Cheng M; Li Y; Wang L; Fang L; Cao Y; Song H
    Synth Syst Biotechnol; 2023 Mar; 8(1):1-10. PubMed ID: 36313217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/dCas9-RpoD-Mediated Simultaneous Transcriptional Activation and Repression in
    Chen Y; Niu X; Cheng M; Wang L; Sun P; Song H; Cao Y
    ACS Synth Biol; 2022 Jun; 11(6):2184-2192. PubMed ID: 35608070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type I-F CRISPR-PAIR platform for multi-mode regulation to boost extracellular electron transfer in
    Chen Y; Cheng M; Song H; Cao Y
    iScience; 2022 Jun; 25(6):104491. PubMed ID: 35712075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-mediated genome editing of Shewanella oneidensis MR-1 using a broad host-range pBBR1-based plasmid.
    Suzuki Y; Kouzuma A; Watanabe K
    J Gen Appl Microbiol; 2020 Apr; 66(1):41-45. PubMed ID: 31447475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants.
    Tan J; Zeng D; Zhao Y; Wang Y; Liu T; Li S; Xue Y; Luo Y; Xie X; Chen L; Liu YG; Zhu Q
    Plant Biotechnol J; 2022 May; 20(5):934-943. PubMed ID: 34984801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and highly efficient genomic engineering with a novel iEditing device for programming versatile extracellular electron transfer of electroactive bacteria.
    Fan YY; Tang Q; Li Y; Li FH; Wu JH; Li WW; Yu HQ
    Environ Microbiol; 2021 Feb; 23(2):1238-1255. PubMed ID: 33369000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y
    Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ScCas9
    Liu T; Zeng D; Zheng Z; Lin Z; Xue Y; Li T; Xie X; Ma G; Liu YG; Zhu Q
    J Integr Plant Biol; 2021 Sep; 63(9):1611-1619. PubMed ID: 34411422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum.
    Wang Y; Liu Y; Li J; Yang Y; Ni X; Cheng H; Huang T; Guo Y; Ma H; Zheng P; Wang M; Sun J; Ma Y
    Biotechnol Bioeng; 2019 Nov; 116(11):3016-3029. PubMed ID: 31317533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors.
    Huang TP; Zhao KT; Miller SM; Gaudelli NM; Oakes BL; Fellmann C; Savage DF; Liu DR
    Nat Biotechnol; 2019 Jun; 37(6):626-631. PubMed ID: 31110355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.