BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35182541)

  • 1. Extracellular and intracellular components of the impedance of neural tissue.
    Bedard C; Piette C; Venance L; Destexhe A
    Biophys J; 2022 Mar; 121(6):869-885. PubMed ID: 35182541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A framework to reconcile frequency scaling measurements, from intracellular recordings, local-field potentials, up to EEG and MEG signals.
    Bedard C; Gomes JM; Bal T; Destexhe A
    J Integr Neurosci; 2017; 16(1):3-18. PubMed ID: 28891497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Claims that the Brain Extracellular Impedance Is High and Non-resistive.
    Barbour B
    Biophys J; 2017 Oct; 113(7):1636-1638. PubMed ID: 28978453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular Impedance Measurements Reveal Non-ohmic Properties of the Extracellular Medium around Neurons.
    Gomes JM; Bédard C; Valtcheva S; Nelson M; Khokhlova V; Pouget P; Venance L; Bal T; Destexhe A
    Biophys J; 2016 Jan; 110(1):234-46. PubMed ID: 26745426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroscopic models of local field potentials and the apparent 1/f noise in brain activity.
    Bédard C; Destexhe A
    Biophys J; 2009 Apr; 96(7):2589-603. PubMed ID: 19348744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impedance Spectrum in Cortical Tissue: Implications for Propagation of LFP Signals on the Microscopic Level.
    Miceli S; Ness TV; Einevoll GT; Schubert D
    eNeuro; 2017; 4(1):. PubMed ID: 28197543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of dispersive properties of encapsulation tissue surrounding deep brain stimulation electrodes in the rat.
    Sridhar K; Evers J; Botelho DP; Lowery MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2973-2976. PubMed ID: 31946513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decomposition of high-frequency electrical conductivity into extracellular and intracellular compartments based on two-compartment model using low-to-high multi-b diffusion MRI.
    Lee MB; Kim HJ; Kwon OI
    Biomed Eng Online; 2021 Mar; 20(1):29. PubMed ID: 33766044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impedance measures for a better understanding of the electrical stimulation of the inner ear.
    Mesnildrey Q; Macherey O; Herzog P; Venail F
    J Neural Eng; 2019 Feb; 16(1):016023. PubMed ID: 30523898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for frequency-dependent extracellular impedance from the transfer function between extracellular and intracellular potentials: intracellular-LFP transfer function.
    Bédard C; Rodrigues S; Roy N; Contreras D; Destexhe A
    J Comput Neurosci; 2010 Dec; 29(3):389-403. PubMed ID: 20559865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical properties of tissues from a microscopic model of confined electrolytes.
    Solis FJ; Jadhao V
    Phys Med Biol; 2023 May; 68(10):. PubMed ID: 37084738
    [No Abstract]   [Full Text] [Related]  

  • 13. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical solutions of electric potential and impedance for a multilayered spherical volume conductor excited by time-harmonic electric current source: application in brain EIT.
    Xiao C; Lei Y
    Phys Med Biol; 2005 Jun; 50(11):2663-74. PubMed ID: 15901961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical impedance of mouse brain cortex in vitro from 4.7 kHz to 2.0 MHz.
    Wilson MT; Elbohouty M; Voss LJ; Steyn-Ross DA
    Physiol Meas; 2014 Feb; 35(2):267-81. PubMed ID: 24434894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical properties of implant encapsulation tissue.
    Grill WM; Mortimer JT
    Ann Biomed Eng; 1994; 22(1):23-33. PubMed ID: 8060024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Frequency Impedance-Based Cell Discrimination Considering Ion Transport Model in Cell Suspension.
    Kawashima D; Li S; Obara H; Takei M
    IEEE Trans Biomed Eng; 2021 Mar; 68(3):1015-1023. PubMed ID: 32746028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional magnetic resonance electrical impedance tomography (fMREIT) sensitivity analysis using an active bidomain finite-element model of neural tissue.
    Sadleir RJ; Fu F; Chauhan M
    Magn Reson Med; 2019 Jan; 81(1):602-614. PubMed ID: 29770490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectric spectroscopy of human blood.
    Beving H; Eriksson G
    Eur J Surg Suppl; 1994; (574):87-9. PubMed ID: 7531031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-plane multifrequency electrical impedance instrumentation.
    Record PM
    Physiol Meas; 1994 May; 15 Suppl 2a():A29-35. PubMed ID: 8087047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.