BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35182589)

  • 1. Non-ionic detergent assists formation of supercharged nanodiscs and insertion of membrane proteins.
    Tidemand FG; Blemmer S; Johansen NT; Arleth L; Pedersen MC
    Biochim Biophys Acta Biomembr; 2022 Jun; 1864(6):183884. PubMed ID: 35182589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circularized and solubility-enhanced MSPs facilitate simple and high-yield production of stable nanodiscs for studies of membrane proteins in solution.
    Johansen NT; Tidemand FG; Nguyen TTTN; Rand KD; Pedersen MC; Arleth L
    FEBS J; 2019 May; 286(9):1734-1751. PubMed ID: 30675761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive Study of the Self-Assembly of Phospholipid Nanodiscs: What Determines Their Shape and Stoichiometry?
    Skar-Gislinge N; Johansen NT; Høiberg-Nielsen R; Arleth L
    Langmuir; 2018 Oct; 34(42):12569-12582. PubMed ID: 30239200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and Biophysical Properties of Supercharged and Circularized Nanodiscs.
    Johansen NT; Luchini A; Tidemand FG; Orioli S; Martel A; Porcar L; Arleth L; Pedersen MC
    Langmuir; 2021 Jun; 37(22):6681-6690. PubMed ID: 34038130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Advanced Properties of Circularized MSP Nanodiscs Facilitate High-resolution NMR Studies of Membrane Proteins.
    Daniilidis M; Brandl MJ; Hagn F
    J Mol Biol; 2022 Dec; 434(24):167861. PubMed ID: 36273602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disassembly of nanodiscs with cholate.
    Shih AY; Freddolino PL; Sligar SG; Schulten K
    Nano Lett; 2007 Jun; 7(6):1692-6. PubMed ID: 17503871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Split-Intein-Based Method for the Efficient Production of Circularized Nanodiscs for Structural Studies of Membrane Proteins.
    Miehling J; Goricanec D; Hagn F
    Chembiochem; 2018 Sep; 19(18):1927-1933. PubMed ID: 29947468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the Production of Covalently Circularized Nanodiscs and Their Characterization in Physiological Conditions.
    Yusuf Y; Massiot J; Chang YT; Wu PH; Yeh V; Kuo PC; Shiue J; Yu TY
    Langmuir; 2018 Mar; 34(11):3525-3532. PubMed ID: 29478317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanodisc self-assembly is thermodynamically reversible and controllable.
    Camp T; Sligar SG
    Soft Matter; 2020 Jun; 16(24):5615-5623. PubMed ID: 32524103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane matters: The impact of a nanodisc-bilayer or a detergent microenvironment on the properties of two eubacterial rhodopsins.
    Ganapathy S; Opdam L; Hontani Y; Frehan S; Chen Q; Hellingwerf KJ; de Groot HJM; Kennis JTM; de Grip WJ
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183113. PubMed ID: 31672539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of End-Spliced Dimeric Nanodiscs for the Improved Virucidal Activity of a Nanoperforator.
    Oh H; Jung Y; Moon S; Hwang J; Ban C; Chung J; Chung WJ; Kweon DH
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):36757-36768. PubMed ID: 34319090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-Mediated Stack Formation of Nanodiscs.
    Subramanian M; Kielar C; Tsushima S; Fahmy K; Oertel J
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33809519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of Detergent-Solubilized Membrane Proteins into Proteoliposomes and Nanodiscs for Functional and Structural Studies.
    Strickland KM; Neselu K; Grant AJ; Espy CL; McCarty NA; Schmidt-Krey I
    Methods Mol Biol; 2021; 2302():21-35. PubMed ID: 33877620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of the Rhodopsin-Transducin Complex into Lipid Nanodiscs.
    Gao Y; Erickson JW; Cerione RA; Ramachandran S
    Methods Mol Biol; 2019; 2009():317-324. PubMed ID: 31152414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the stability and homogeneity of non-ionic polymer nanodiscs by tuning electrostatic interactions.
    Krishnarjuna B; Marte J; Ravula T; Ramamoorthy A
    J Colloid Interface Sci; 2023 Mar; 634():887-896. PubMed ID: 36566634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size.
    Denisov IG; Grinkova YV; Lazarides AA; Sligar SG
    J Am Chem Soc; 2004 Mar; 126(11):3477-87. PubMed ID: 15025475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the membrane receptor ShuA in DDM micelles and in a model of gram-negative bacteria outer membrane as seen by SAXS and MD simulations.
    Abel S; Marchi M; Solier J; Finet S; Brillet K; Bonneté F
    Biochim Biophys Acta Biomembr; 2021 Feb; 1863(2):183504. PubMed ID: 33157097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational States of ABC Transporter MsbA in a Lipid Environment Investigated by Small-Angle Scattering Using Stealth Carrier Nanodiscs.
    Josts I; Nitsche J; Maric S; Mertens HD; Moulin M; Haertlein M; Prevost S; Svergun DI; Busch S; Forsyth VT; Tidow H
    Structure; 2018 Aug; 26(8):1072-1079.e4. PubMed ID: 29937358
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Mendoza-Hoffmann F; Guo C; Song Y; Feng D; Yang L; Wüthrich K
    J Biomol NMR; 2024 Mar; 78(1):31-37. PubMed ID: 38072902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-angle X-ray and neutron scattering demonstrates that cell-free expression produces properly formed disc-shaped nanolipoprotein particles.
    Cleveland TE; He W; Evans AC; Fischer NO; Lau EY; Coleman MA; Butler P
    Protein Sci; 2018 Mar; 27(3):780-789. PubMed ID: 29266475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.