These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35182604)

  • 1. Independent evaluation of the harvard automated processing pipeline for Electroencephalography 1.0 using multi-site EEG data from children with Fragile X Syndrome.
    Auger E; Berry-Kravis EM; Ethridge LE
    J Neurosci Methods; 2022 Apr; 371():109501. PubMed ID: 35182604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized Processing Software for Developmental and High-Artifact Data.
    Gabard-Durnam LJ; Mendez Leal AS; Wilkinson CL; Levin AR
    Front Neurosci; 2018; 12():97. PubMed ID: 29535597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HAPPILEE: HAPPE In Low Electrode Electroencephalography, a standardized pre-processing software for lower density recordings.
    Lopez KL; Monachino AD; Morales S; Leach SC; Bowers ME; Gabard-Durnam LJ
    Neuroimage; 2022 Oct; 260():119390. PubMed ID: 35817295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development, validation, and comparison of ICA-based gradient artifact reduction algorithms for simultaneous EEG-spiral in/out and echo-planar fMRI recordings.
    Ryali S; Glover GH; Chang C; Menon V
    Neuroimage; 2009 Nov; 48(2):348-61. PubMed ID: 19580873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The HAPPE plus Event-Related (HAPPE+ER) software: A standardized preprocessing pipeline for event-related potential analyses.
    Monachino AD; Lopez KL; Pierce LJ; Gabard-Durnam LJ
    Dev Cogn Neurosci; 2022 Oct; 57():101140. PubMed ID: 35926469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG artifact elimination by extraction of ICA-component features using image processing algorithms.
    Radüntz T; Scouten J; Hochmuth O; Meffert B
    J Neurosci Methods; 2015 Mar; 243():84-93. PubMed ID: 25666892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Maryland analysis of developmental EEG (MADE) pipeline.
    Debnath R; Buzzell GA; Morales S; Bowers ME; Leach SC; Fox NA
    Psychophysiology; 2020 Jun; 57(6):e13580. PubMed ID: 32293719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adjusting ADJUST: Optimizing the ADJUST algorithm for pediatric data using geodesic nets.
    Leach SC; Morales S; Bowers ME; Buzzell GA; Debnath R; Beall D; Fox NA
    Psychophysiology; 2020 Aug; 57(8):e13566. PubMed ID: 32185818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated pipeline for EEG artifact reduction (APPEAR) recorded during fMRI.
    Mayeli A; Al Zoubi O; Henry K; Wong CK; White EJ; Luo Q; Zotev V; Refai H; Bodurka J
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34192674
    [No Abstract]   [Full Text] [Related]  

  • 10. AOAR: an automatic ocular artifact removal approach for multi-channel electroencephalogram data based on non-negative matrix factorization and empirical mode decomposition.
    Gu Y; Li X; Chen S; Li X
    J Neural Eng; 2021 Apr; 18(5):056012. PubMed ID: 33821810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NEAR: An artifact removal pipeline for human newborn EEG data.
    Kumaravel VP; Farella E; Parise E; Buiatti M
    Dev Cogn Neurosci; 2022 Apr; 54():101068. PubMed ID: 35085870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction and separation of motion artifacts in EEG data using a mobile phantom head device.
    Oliveira AS; Schlink BR; Hairston WD; König P; Ferris DP
    J Neural Eng; 2016 Jun; 13(3):036014. PubMed ID: 27137818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed ocular artifacts removal of multichannel EEG based on improved moment matching.
    Shi Q; Li Z; Zhang L; Jiang H; Tian F; Zhao Q; Hu B
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34388746
    [No Abstract]   [Full Text] [Related]  

  • 14. Introducing RELAX: An automated pre-processing pipeline for cleaning EEG data - Part 1: Algorithm and application to oscillations.
    Bailey NW; Biabani M; Hill AT; Miljevic A; Rogasch NC; McQueen B; Murphy OW; Fitzgerald PB
    Clin Neurophysiol; 2023 May; 149():178-201. PubMed ID: 36822997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction hybrid artifacts of EMG-EOG in electroencephalography evoked by prefrontal transcranial magnetic stimulation.
    Bai Y; Wan X; Zeng K; Ni Y; Qiu L; Li X
    J Neural Eng; 2016 Dec; 13(6):066016. PubMed ID: 27788128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removing muscle artifacts from EEG data of people with cognitive impairment using high order statistic methods.
    Kalogiannis G; Chassapis G; Tsolaki M
    Hell J Nucl Med; 2019; 22 Suppl():165-173. PubMed ID: 30877734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rating by detection: an artifact detection protocol for rating EEG quality with average event duration.
    Wȩsierski D; Rufuie MR; Milczarek O; Ziembla W; Ogniewski P; Kołodziejak A; Niedbalski P
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36758229
    [No Abstract]   [Full Text] [Related]  

  • 18. TMSEEG: A MATLAB-Based Graphical User Interface for Processing Electrophysiological Signals during Transcranial Magnetic Stimulation.
    Atluri S; Frehlich M; Mei Y; Garcia Dominguez L; Rogasch NC; Wong W; Daskalakis ZJ; Farzan F
    Front Neural Circuits; 2016; 10():78. PubMed ID: 27774054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid wavelet and EMD/ICA approach for artifact suppression in pervasive EEG.
    Bono V; Das S; Jamal W; Maharatna K
    J Neurosci Methods; 2016 Jul; 267():89-107. PubMed ID: 27102040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaussian Elimination-Based Novel Canonical Correlation Analysis Method for EEG Motion Artifact Removal.
    Roy V; Shukla S; Shukla PK; Rawat P
    J Healthc Eng; 2017; 2017():9674712. PubMed ID: 29118966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.