These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 35182623)
1. Development of GRAPES-CUACE adjoint model version 2.0 and its application in sensitivity analysis of ozone pollution in north China. Wang C; An X; Zhao D; Sun Z; Jiang L; Li J; Hou Q Sci Total Environ; 2022 Jun; 826():153879. PubMed ID: 35182623 [TBL] [Abstract][Full Text] [Related]
2. A case study of surface ozone source contributions in the Seoul metropolitan area using the adjoint of CMAQ. Kashfi Yeganeh A; Momeni M; Choi Y; Park J; Jung J J Air Waste Manag Assoc; 2024 Jul; 74(7):511-530. PubMed ID: 38809877 [TBL] [Abstract][Full Text] [Related]
3. Sensitivities of Ozone Air Pollution in the Beijing-Tianjin-Hebei Area to Local and Upwind Precursor Emissions Using Adjoint Modeling. Wang X; Fu TM; Zhang L; Cao H; Zhang Q; Ma H; Shen L; Evans MJ; Ivatt PD; Lu X; Chen Y; Zhang L; Feng X; Yang X; Zhu L; Henze DK Environ Sci Technol; 2021 May; 55(9):5752-5762. PubMed ID: 33890767 [TBL] [Abstract][Full Text] [Related]
4. Attenuated sensitivity of ozone to precursors in Beijing-Tianjin-Hebei region with the continuous NO Wei W; Wang X; Wang X; Li R; Zhou C; Cheng S Sci Total Environ; 2022 Mar; 813():152589. PubMed ID: 34954176 [TBL] [Abstract][Full Text] [Related]
5. The adjoint of CMAQ. Hakami A; Henze DK; Seinfeld JH; Singh K; Sandu A; Kim S; Byun D; Li Q Environ Sci Technol; 2007 Nov; 41(22):7807-17. PubMed ID: 18075092 [TBL] [Abstract][Full Text] [Related]
6. Synergistic effect of reductions in multiple gaseous precursors on secondary inorganic aerosols in winter under a meteorology-based redistributed daily NH Ye Z; Li J; Pan Y; Wang Z; Guo X; Cheng L; Tang X; Zhu J; Kong L; Song Y; Xing J; Sun Y; Pan X Sci Total Environ; 2022 May; 821():153383. PubMed ID: 35085635 [TBL] [Abstract][Full Text] [Related]
7. A comprehensive study on ozone pollution in a megacity in North China Plain during summertime: Observations, source attributions and ozone sensitivity. Sun J; Shen Z; Wang R; Li G; Zhang Y; Zhang B; He K; Tang Z; Xu H; Qu L; Sai Hang Ho S; Liu S; Cao J Environ Int; 2021 Jan; 146():106279. PubMed ID: 33276317 [TBL] [Abstract][Full Text] [Related]
8. Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China. Liu Y; Song M; Liu X; Zhang Y; Hui L; Kong L; Zhang Y; Zhang C; Qu Y; An J; Ma D; Tan Q; Feng M Environ Pollut; 2020 Feb; 257():113599. PubMed ID: 31796324 [TBL] [Abstract][Full Text] [Related]
9. [Application of ARIMA Model for Mid- and Long-term Forecasting of Ozone Concentration]. Li YR; Han TT; Wang JX; Quan WJ; He D; Jiao RG; Wu J; Guo H; Ma ZQ Huan Jing Ke Xue; 2021 Jul; 42(7):3118-3126. PubMed ID: 34212637 [TBL] [Abstract][Full Text] [Related]
10. Simulation of the impact of the emergency control measures on the reduction of air pollutants: a case study of APEC blue. Tong P; Zhang Q; Lin H; Jian X; Wang X Environ Monit Assess; 2020 Jan; 192(2):116. PubMed ID: 31942665 [TBL] [Abstract][Full Text] [Related]
11. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: a case study using a chemical reaction model. Wei W; Lv Z; Cheng S; Wang L; Ji D; Zhou Y; Han L; Wang L Environ Monit Assess; 2015 Jun; 187(6):377. PubMed ID: 26013656 [TBL] [Abstract][Full Text] [Related]
12. Ozone control strategies for local formation- and regional transport-dominant scenarios in a manufacturing city in southern China. Mao J; Yan F; Zheng L; You Y; Wang W; Jia S; Liao W; Wang X; Chen W Sci Total Environ; 2022 Mar; 813():151883. PubMed ID: 34826481 [TBL] [Abstract][Full Text] [Related]
13. Rural vehicle emission as an important driver for the variations of summertime tropospheric ozone in the Beijing-Tianjin-Hebei region during 2014-2019. Song Y; Zhang Y; Liu J; Zhang C; Liu C; Liu P; Mu Y J Environ Sci (China); 2022 Apr; 114():126-135. PubMed ID: 35459478 [TBL] [Abstract][Full Text] [Related]
14. Adjoint sensitivity analysis for a three-dimensional photochemical model: application to Southern California. Martien PT; Harley RA Environ Sci Technol; 2006 Jul; 40(13):4200-10. PubMed ID: 16856736 [TBL] [Abstract][Full Text] [Related]
15. The impact of the aerosol reduction on the worsening ozone pollution over the Beijing-Tianjin-Hebei region via influencing photolysis rates. Gao J; Li Y; Xie Z; Hu B; Wang L; Bao F; Fan S Sci Total Environ; 2022 May; 821():153197. PubMed ID: 35063532 [TBL] [Abstract][Full Text] [Related]
16. Contribution of local and surrounding area anthropogenic emissions to a high ozone episode in Zhengzhou, China. Min R; Wang F; Wang Y; Song G; Zheng H; Zhang H; Ru X; Song H Environ Res; 2022 Sep; 212(Pt C):113440. PubMed ID: 35526583 [TBL] [Abstract][Full Text] [Related]
17. Source contributions of surface ozone in China using an adjoint sensitivity analysis. Wang MY; Yim SHL; Wong DC; Ho KF Sci Total Environ; 2019 Apr; 662():385-392. PubMed ID: 30690372 [TBL] [Abstract][Full Text] [Related]
18. Sources and Processes Affecting Fine Particulate Matter Pollution over North China: An Adjoint Analysis of the Beijing APEC Period. Zhang L; Shao J; Lu X; Zhao Y; Hu Y; Henze DK; Liao H; Gong S; Zhang Q Environ Sci Technol; 2016 Aug; 50(16):8731-40. PubMed ID: 27434821 [TBL] [Abstract][Full Text] [Related]
19. Meteorological mechanism for a large-scale persistent severe ozone pollution event over eastern China in 2017. Mao J; Wang L; Lu C; Liu J; Li M; Tang G; Ji D; Zhang N; Wang Y J Environ Sci (China); 2020 Jun; 92():187-199. PubMed ID: 32430122 [TBL] [Abstract][Full Text] [Related]
20. Spatio-temporal evolution of ozone pollution and its influencing factors in the Beijing-Tianjin-Hebei Urban Agglomeration. Wang ZB; Li JX; Liang LW Environ Pollut; 2020 Jan; 256():113419. PubMed ID: 31706769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]