These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 3518266)

  • 1. Effects of red blood cell potassium and hypertonicity on the growth of Plasmodium falciparum in culture.
    Ginsburg H; Handeli S; Friedman S; Gorodetsky R; Krugliak M
    Z Parasitenkd; 1986; 72(2):185-99. PubMed ID: 3518266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of Plasmodium falciparum in sodium-enriched human erythrocytes.
    Tanabe K; Izumo A; Kageyama K
    Am J Trop Med Hyg; 1986 May; 35(3):476-8. PubMed ID: 3518504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion metabolism in malaria-infected erythrocytes.
    Tanabe K
    Blood Cells; 1990; 16(2-3):437-49. PubMed ID: 2175223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The malaria parasite supplies glutathione to its host cell--investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum.
    Atamna H; Ginsburg H
    Eur J Biochem; 1997 Dec; 250(3):670-9. PubMed ID: 9461289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The status of zinc in malaria (Plasmodium falciparum) infected human red blood cells: stage dependent accumulation, compartmentation and effect of dipicolinate.
    Ginsburg H; Gorodetsky R; Krugliak M
    Biochim Biophys Acta; 1986 May; 886(3):337-44. PubMed ID: 3518809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions.
    Schmidt WF; McManus TJ
    J Gen Physiol; 1977 Jul; 70(1):59-79. PubMed ID: 894251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray microanalysis of Plasmodium falciparum and infected red blood cells: effects of qinghaosu and chloroquine on potassium, sodium, and phosphorus composition.
    Lee P; Ye Z; Van Dyke K; Kirk RG
    Am J Trop Med Hyg; 1988 Aug; 39(2):157-65. PubMed ID: 3044154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan-N-formylated gramicidin causes growth inhibition of Plasmodium falciparum by inducing potassium efflux from infected erythrocytes.
    Otten-Kuipers MA; Coppens-Burkunk GW; Kronenburg NA; Vis Mde A; Roelofsen B; Op den Kamp JA
    Parasitol Res; 1997; 83(2):185-92. PubMed ID: 9039702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Malaria parasites tolerate a broad range of ionic environments and do not require host cation remodelling.
    Pillai AD; Addo R; Sharma P; Nguitragool W; Srinivasan P; Desai SA
    Mol Microbiol; 2013 Apr; 88(1):20-34. PubMed ID: 23347042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of aspirin-containing serum in the continuous culture of Plasmodium falciparum.
    Whaun JM
    J Protozool; 1984 Aug; 31(3):381-4. PubMed ID: 6389847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of gramicidin and tryptophan-N-formylated gramicidin on the sodium and potassium content of human erythrocytes.
    Otten-Kuipers MA; Beumer TL; Kronenburg NA; Roelofsen B; Op den Kamp JA
    Mol Membr Biol; 1996; 13(4):225-32. PubMed ID: 9116761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes.
    Taraschi TF; Trelka D; Martinez S; Schneider T; O'Donnell ME
    Int J Parasitol; 2001 Oct; 31(12):1381-91. PubMed ID: 11566305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of Plasmodium falciparum in vitro growth on the cation permeability of the human host erythrocyte.
    Brand VB; Sandu CD; Duranton C; Tanneur V; Lang KS; Huber SM; Lang F
    Cell Physiol Biochem; 2003; 13(6):347-56. PubMed ID: 14631141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes.
    Howard RJ; Uni S; Aikawa M; Aley SB; Leech JH; Lew AM; Wellems TE; Rener J; Taylor DW
    J Cell Biol; 1986 Oct; 103(4):1269-77. PubMed ID: 3533951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The red cell and the malarial parasite.
    Pasvol G; Weatherall DJ
    Br J Haematol; 1980 Oct; 46(2):165-70. PubMed ID: 7000156
    [No Abstract]   [Full Text] [Related]  

  • 16. Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum.
    Martin RE; Kirk K
    Blood; 2007 Mar; 109(5):2217-24. PubMed ID: 17047158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic host responses to malarial infection during the intraerythrocytic developmental cycle.
    Wallqvist A; Fang X; Tewari SG; Ye P; Reifman J
    BMC Syst Biol; 2016 Aug; 10(1):58. PubMed ID: 27502771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations of red blood cell sodium transport during malarial infection.
    Dunn MJ
    J Clin Invest; 1969 Apr; 48(4):674-84. PubMed ID: 4975361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New permeability pathways induced by the malarial parasite in the membrane of its host erythrocyte: potential routes for targeting of drugs into infected cells.
    Ginsburg H; Stein WD
    Biosci Rep; 1987 Jun; 7(6):455-63. PubMed ID: 3322419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray microanalysis investigation of the changes in Na, K, and hemoglobin concentration in plasmodium falciparum-infected red blood cells.
    Mauritz JM; Seear R; Esposito A; Kaminski CF; Skepper JN; Warley A; Lew VL; Tiffert T
    Biophys J; 2011 Mar; 100(6):1438-45. PubMed ID: 21402025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.