These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 35182715)

  • 1. Mixed-methods evaluation of three natural language processing modeling approaches for measuring documented goals-of-care discussions in the electronic health record.
    Uyeda AM; Curtis JR; Engelberg RA; Brumback LC; Guo Y; Sibley J; Lober WB; Cohen T; Torrence J; Heywood J; Paul SR; Kross EK; Lee RY
    J Pain Symptom Manage; 2022 Jun; 63(6):e713-e723. PubMed ID: 35182715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Goals of Care Conversations in the Electronic Health Record Using Natural Language Processing and Machine Learning.
    Lee RY; Brumback LC; Lober WB; Sibley J; Nielsen EL; Treece PD; Kross EK; Loggers ET; Fausto JA; Lindvall C; Engelberg RA; Curtis JR
    J Pain Symptom Manage; 2021 Jan; 61(1):136-142.e2. PubMed ID: 32858164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome.
    Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR
    JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Information Gaps in Electronic Health Records by Using Natural Language Processing: Gynecologic Surgery History Identification.
    Moon S; Carlson LA; Moser ED; Agnikula Kshatriya BS; Smith CY; Rocca WA; Gazzuola Rocca L; Bielinski SJ; Liu H; Larson NB
    J Med Internet Res; 2022 Jan; 24(1):e29015. PubMed ID: 35089141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring Adoption of Patient Priorities-Aligned Care Using Natural Language Processing of Electronic Health Records: Development and Validation of the Model.
    Razjouyan J; Freytag J; Dindo L; Kiefer L; Odom E; Halaszynski J; Silva JW; Naik AD
    JMIR Med Inform; 2021 Feb; 9(2):e18756. PubMed ID: 33605893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression.
    Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN
    Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural Language Processing to Assess End-of-Life Quality Indicators in Cancer Patients Receiving Palliative Surgery.
    Lindvall C; Lilley EJ; Zupanc SN; Chien I; Udelsman BV; Walling A; Cooper Z; Tulsky JA
    J Palliat Med; 2019 Feb; 22(2):183-187. PubMed ID: 30328764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR
    JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictors of Documented Goals-of-Care Discussion for Hospitalized Patients With Chronic Illness.
    Uyeda AM; Lee RY; Pollack LR; Paul SR; Downey L; Brumback LC; Engelberg RA; Sibley J; Lober WB; Cohen T; Torrence J; Kross EK; Curtis JR
    J Pain Symptom Manage; 2023 Mar; 65(3):233-241. PubMed ID: 36423800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.
    Le DV; Montgomery J; Kirkby KC; Scanlan J
    J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting goals of care conversations in clinical notes with active learning.
    Weissenbacher D; Courtright K; Rawal S; Crane-Droesch A; O'Connor K; Kuhl N; Merlino C; Foxwell A; Haines L; Puhl J; Gonzalez-Hernandez G
    J Biomed Inform; 2024 Mar; 151():104618. PubMed ID: 38431151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural language processing improves identification of colorectal cancer testing in the electronic medical record.
    Denny JC; Choma NN; Peterson JF; Miller RA; Bastarache L; Li M; Peterson NB
    Med Decis Making; 2012; 32(1):188-97. PubMed ID: 21393557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Underserved populations with missing race ethnicity data differ significantly from those with structured race/ethnicity documentation.
    Sholle ET; Pinheiro LC; Adekkanattu P; Davila MA; Johnson SB; Pathak J; Sinha S; Li C; Lubansky SA; Safford MM; Campion TR
    J Am Med Inform Assoc; 2019 Aug; 26(8-9):722-729. PubMed ID: 31329882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural language processing to identify social determinants of health in Alzheimer's disease and related dementia from electronic health records.
    Wu W; Holkeboer KJ; Kolawole TO; Carbone L; Mahmoudi E
    Health Serv Res; 2023 Dec; 58(6):1292-1302. PubMed ID: 37534741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using natural language processing to identify opioid use disorder in electronic health record data.
    Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM
    Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural language processing and machine learning to identify alcohol misuse from the electronic health record in trauma patients: development and internal validation.
    Afshar M; Phillips A; Karnik N; Mueller J; To D; Gonzalez R; Price R; Cooper R; Joyce C; Dligach D
    J Am Med Inform Assoc; 2019 Mar; 26(3):254-261. PubMed ID: 30602031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cohort profile: St. Michael's Hospital Tuberculosis Database (SMH-TB), a retrospective cohort of electronic health record data and variables extracted using natural language processing.
    Landsman D; Abdelbasit A; Wang C; Guerzhoy M; Joshi U; Mathew S; Pou-Prom C; Dai D; Pequegnat V; Murray J; Chokar K; Banning M; Mamdani M; Mishra S; Batt J
    PLoS One; 2021; 16(3):e0247872. PubMed ID: 33657184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of pancreatic cancer risk factors from clinical notes using natural language processing.
    Sarwal D; Wang L; Gandhi S; Sagheb Hossein Pour E; Janssens LP; Delgado AM; Doering KA; Mishra AK; Greenwood JD; Liu H; Majumder S
    Pancreatology; 2024 Jun; 24(4):572-578. PubMed ID: 38693040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review.
    Koleck TA; Dreisbach C; Bourne PE; Bakken S
    J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.