BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35182749)

  • 1. Penguin: A tool for predicting pseudouridine sites in direct RNA nanopore sequencing data.
    Hassan D; Acevedo D; Daulatabad SV; Mir Q; Janga SC
    Methods; 2022 Jul; 203():478-487. PubMed ID: 35182749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nm-Nano: a machine learning framework for transcriptome-wide single-molecule mapping of 2´-O-methylation (Nm) sites in nanopore direct RNA sequencing datasets.
    Hassan D; Ariyur A; Daulatabad SV; Mir Q; Janga SC
    RNA Biol; 2024 Jan; 21(1):1-15. PubMed ID: 38758523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bisulfite and Nanopore Sequencing for Pseudouridine in RNA.
    Burrows CJ; Fleming AM
    Acc Chem Res; 2023 Oct; 56(19):2740-2751. PubMed ID: 37700703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RF-PseU: A Random Forest Predictor for RNA Pseudouridine Sites.
    Lv Z; Zhang J; Ding H; Zou Q
    Front Bioeng Biotechnol; 2020; 8():134. PubMed ID: 32175316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Sequencing of RNA and RNA Modification Identification Using Nanopore.
    Wongsurawat T; Jenjaroenpun P; Nookaew I
    Methods Mol Biol; 2022; 2477():71-77. PubMed ID: 35524112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NanoMUD: Profiling of pseudouridine and N1-methylpseudouridine using Oxford Nanopore direct RNA sequencing.
    Zhang Y; Yan H; Wei Z; Hong H; Huang D; Liu G; Qin Q; Rong R; Gao P; Meng J; Ying B
    Int J Biol Macromol; 2024 May; 270(Pt 2):132433. PubMed ID: 38759861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer learning enables identification of multiple types of RNA modifications using nanopore direct RNA sequencing.
    Wu Y; Shao W; Yan M; Wang Y; Xu P; Huang G; Li X; Gregory BD; Yang J; Wang H; Yu X
    Nat Commun; 2024 May; 15(1):4049. PubMed ID: 38744925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudouridines have context-dependent mutation and stop rates in high-throughput sequencing.
    Zhou KI; Clark WC; Pan DW; Eckwahl MJ; Dai Q; Pan T
    RNA Biol; 2018; 15(7):892-900. PubMed ID: 29683381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequencing accuracy and systematic errors of nanopore direct RNA sequencing.
    Liu-Wei W; van der Toorn W; Bohn P; Hölzer M; Smyth RP; von Kleist M
    BMC Genomics; 2024 May; 25(1):528. PubMed ID: 38807060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PseU-KeMRF: A novel method for identifying RNA pseudouridine sites.
    Chen M; Zou Q; Qi R; Ding Y
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Apr; PP():. PubMed ID: 38625768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking of computational methods for m6A profiling with Nanopore direct RNA sequencing.
    Maestri S; Furlan M; Mulroney L; Coscujuela Tarrero L; Ugolini C; Dalla Pozza F; Leonardi T; Birney E; Nicassio F; Pelizzola M
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38279646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-quantitative detection of pseudouridine modifications and type I/II hypermodifications in human mRNAs using direct long-read sequencing.
    Tavakoli S; Nabizadeh M; Makhamreh A; Gamper H; McCormick CA; Rezapour NK; Hou YM; Wanunu M; Rouhanifard SH
    Nat Commun; 2023 Jan; 14(1):334. PubMed ID: 36658122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanopore-based direct sequencing of RNA transcripts with 10 different modified nucleotides reveals gaps in existing technology.
    Burdick JT; Comai A; Bruzel A; Sun G; Dedon PC; Cheung VG
    G3 (Bethesda); 2023 Nov; 13(11):. PubMed ID: 37655917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Analysis of HIV mRNA m
    Honeycutt E; Kizito F; Karn J; Sweet T
    Methods Mol Biol; 2024; 2807():209-227. PubMed ID: 38743231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative profiling N1-methyladenosine (m1A) RNA methylation from Oxford nanopore direct RNA sequencing data.
    Chen S; Meng J; Zhang Y
    Methods; 2024 May; 228():30-37. PubMed ID: 38768930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fuzzy kernel evidence Random Forest for identifying pseudouridine sites.
    Chen M; Sun M; Su X; Tiwari P; Ding Y
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38622357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of tRNA abundance and modifications by nanopore RNA sequencing.
    Lucas MC; Pryszcz LP; Medina R; Milenkovic I; Camacho N; Marchand V; Motorin Y; Ribas de Pouplana L; Novoa EM
    Nat Biotechnol; 2024 Jan; 42(1):72-86. PubMed ID: 37024678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A signal processing and deep learning framework for methylation detection using Oxford Nanopore sequencing.
    Ahsan MU; Gouru A; Chan J; Zhou W; Wang K
    Nat Commun; 2024 Feb; 15(1):1448. PubMed ID: 38365920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is There Any Sequence Feature in the RNA Pseudouridine Modification Prediction Problem?
    Dou L; Li X; Ding H; Xu L; Xiang H
    Mol Ther Nucleic Acids; 2020 Mar; 19():293-303. PubMed ID: 31865116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome-wide quantitative profiling of PUS7-dependent pseudouridylation by nanopore direct long read RNA sequencing.
    Bansal M; Kundu A; Gibson A; Gupta A; Ding J; RudraRaju SV; Sudarshan S; Ding HF
    bioRxiv; 2024 Feb; ():. PubMed ID: 38352483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.