These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35183095)

  • 1. A bottom-up perspective on photodynamics and photoprotection in light-harvesting complexes using anti-Brownian trapping.
    Squires AH; Wang Q; Dahlberg PD; Moerner WE
    J Chem Phys; 2022 Feb; 156(7):070901. PubMed ID: 35183095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin.
    Squires AH; Moerner WE
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9779-9784. PubMed ID: 28847963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein.
    Squires AH; Dahlberg PD; Liu H; Magdaong NCM; Blankenship RE; Moerner WE
    Nat Commun; 2019 Mar; 10(1):1172. PubMed ID: 30862823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phycobilisome: architecture of a light-harvesting supercomplex.
    Watanabe M; Ikeuchi M
    Photosynth Res; 2013 Oct; 116(2-3):265-76. PubMed ID: 24081814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proteolysis adaptor, NblA, initiates protein pigment degradation by interacting with the cyanobacterial light-harvesting complexes.
    Sendersky E; Kozer N; Levi M; Garini Y; Shav-Tal Y; Schwarz R
    Plant J; 2014 Jul; 79(1):118-26. PubMed ID: 24798071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marine cyanobacteria tune energy transfer efficiency in their light-harvesting antennae by modifying pigment coupling.
    Kolodny Y; Zer H; Propper M; Yochelis S; Paltiel Y; Keren N
    FEBS J; 2021 Feb; 288(3):980-994. PubMed ID: 32428340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phycobilisome, a light-harvesting complex responsive to environmental conditions.
    Grossman AR; Schaefer MR; Chiang GG; Collier JL
    Microbiol Rev; 1993 Sep; 57(3):725-49. PubMed ID: 8246846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The terminal phycobilisome emitter, LCM: A light-harvesting pigment with a phytochrome chromophore.
    Tang K; Ding WL; Höppner A; Zhao C; Zhang L; Hontani Y; Kennis JT; Gärtner W; Scheer H; Zhou M; Zhao KH
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15880-5. PubMed ID: 26669441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The proteolysis adaptor, NblA, is essential for degradation of the core pigment of the cyanobacterial light-harvesting complex.
    Sendersky E; Kozer N; Levi M; Moizik M; Garini Y; Shav-Tal Y; Schwarz R
    Plant J; 2015 Sep; 83(5):845-52. PubMed ID: 26173720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy.
    Akimoto S; Yokono M; Hamada F; Teshigahara A; Aikawa S; Kondo A
    Biochim Biophys Acta; 2012 Aug; 1817(8):1483-9. PubMed ID: 22285745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting pigment architecture of individual photosynthetic antenna complexes in solution.
    Wang Q; Moerner WE
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13880-5. PubMed ID: 26438850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core and rod structures of a thermophilic cyanobacterial light-harvesting phycobilisome.
    Kawakami K; Hamaguchi T; Hirose Y; Kosumi D; Miyata M; Kamiya N; Yonekura K
    Nat Commun; 2022 Jun; 13(1):3389. PubMed ID: 35715389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence spectroscopy of single photosynthetic light-harvesting supramolecular systems.
    Saga Y; Tamiaki H
    Cell Biochem Biophys; 2004; 40(2):149-65. PubMed ID: 15054220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of far-red spectral states in the energy regulation of phycobilisomes.
    Krüger TPJ; van Grondelle R; Gwizdala M
    Biochim Biophys Acta Bioenerg; 2019 Apr; 1860(4):341-349. PubMed ID: 30721662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy transfer in the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, analyzed by time-resolved fluorescence spectroscopies.
    Akimoto S; Shinoda T; Chen M; Allakhverdiev SI; Tomo T
    Photosynth Res; 2015 Aug; 125(1-2):115-22. PubMed ID: 25648637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phycobilisome composition and possible relationship to reaction centers.
    Khanna R; Graham JR; Myers J; Gantt E
    Arch Biochem Biophys; 1983 Jul; 224(2):534-42. PubMed ID: 6408989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and Characterization of Intact Phycobilisome in Cyanobacteria.
    Jiang HW; Ho MY
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Molecule Identification of Quenched and Unquenched States of LHCII.
    Schlau-Cohen GS; Yang HY; Krüger TP; Xu P; Gwizdala M; van Grondelle R; Croce R; Moerner WE
    J Phys Chem Lett; 2015 Mar; 6(5):860-7. PubMed ID: 26262664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942. Effects of phycobilisome size, temperature, and membrane lipid composition.
    Sarcina M; Tobin MJ; Mullineaux CW
    J Biol Chem; 2001 Dec; 276(50):46830-4. PubMed ID: 11590154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The amazing phycobilisome.
    Adir N; Bar-Zvi S; Harris D
    Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148047. PubMed ID: 31306623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.