These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 35183109)
1. Functionally prioritised whole-genome sequence variants improve the accuracy of genomic prediction for heat tolerance. Cheruiyot EK; Haile-Mariam M; Cocks BG; MacLeod IM; Mrode R; Pryce JE Genet Sel Evol; 2022 Feb; 54(1):17. PubMed ID: 35183109 [TBL] [Abstract][Full Text] [Related]
2. Optimizing genomic prediction for Australian Red dairy cattle. van den Berg I; MacLeod IM; Reich CM; Breen EJ; Pryce JE J Dairy Sci; 2020 Jul; 103(7):6276-6298. PubMed ID: 32331891 [TBL] [Abstract][Full Text] [Related]
3. Genomic prediction based on selected variants from imputed whole-genome sequence data in Australian sheep populations. Moghaddar N; Khansefid M; van der Werf JHJ; Bolormaa S; Duijvesteijn N; Clark SA; Swan AA; Daetwyler HD; MacLeod IM Genet Sel Evol; 2019 Dec; 51(1):72. PubMed ID: 31805849 [TBL] [Abstract][Full Text] [Related]
4. Genomic selection for tolerance to heat stress in Australian dairy cattle. Nguyen TTT; Bowman PJ; Haile-Mariam M; Pryce JE; Hayes BJ J Dairy Sci; 2016 Apr; 99(4):2849-2862. PubMed ID: 27037467 [TBL] [Abstract][Full Text] [Related]
5. Value of sharing cow reference population between countries on reliability of genomic prediction for milk yield traits. Haile-Mariam M; MacLeod IM; Bolormaa S; Schrooten C; O'Connor E; de Jong G; Daetwyler HD; Pryce JE J Dairy Sci; 2020 Feb; 103(2):1711-1728. PubMed ID: 31864746 [TBL] [Abstract][Full Text] [Related]
6. Application of a Bayesian non-linear model hybrid scheme to sequence data for genomic prediction and QTL mapping. Wang T; Chen YP; MacLeod IM; Pryce JE; Goddard ME; Hayes BJ BMC Genomics; 2017 Aug; 18(1):618. PubMed ID: 28810831 [TBL] [Abstract][Full Text] [Related]
7. Imputation accuracy from low- to medium-density SNP chips for US crossbred dairy cattle. Déru V; Tiezzi F; VanRaden PM; Lozada-Soto EA; Toghiani S; Maltecca C J Dairy Sci; 2024 Jan; 107(1):398-411. PubMed ID: 37641298 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide association study and prediction of genomic breeding values for fatty-acid composition in Korean Hanwoo cattle using a high-density single-nucleotide polymorphism array. Bhuiyan MSA; Kim YK; Kim HJ; Lee DH; Lee SH; Yoon HB; Lee SH J Anim Sci; 2018 Sep; 96(10):4063-4075. PubMed ID: 30265318 [TBL] [Abstract][Full Text] [Related]
9. Marker selection and genomic prediction of economically important traits using imputed high-density genotypes for 5 breeds of dairy cattle. Al-Khudhair A; VanRaden PM; Null DJ; Li B J Dairy Sci; 2021 Apr; 104(4):4478-4485. PubMed ID: 33612229 [TBL] [Abstract][Full Text] [Related]
10. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. Erbe M; Hayes BJ; Matukumalli LK; Goswami S; Bowman PJ; Reich CM; Mason BA; Goddard ME J Dairy Sci; 2012 Jul; 95(7):4114-29. PubMed ID: 22720968 [TBL] [Abstract][Full Text] [Related]
11. Genetic evaluations for endangered dual-purpose German Black Pied cattle using 50K SNPs, a breed-specific 200K chip, and whole-genome sequencing. Wolf MJ; Neumann GB; Kokuć P; Yin T; Brockmann GA; König S; May K J Dairy Sci; 2023 May; 106(5):3345-3358. PubMed ID: 37028956 [TBL] [Abstract][Full Text] [Related]
12. Genomic breeding values, SNP effects and gene identification for disease traits in cow training sets. Naderi S; Bohlouli M; Yin T; König S Anim Genet; 2018 Jun; 49(3):178-192. PubMed ID: 29624705 [TBL] [Abstract][Full Text] [Related]
13. Use of whole-genome sequence data and novel genomic selection strategies to improve selection for age at puberty in tropically-adapted beef heifers. Warburton CL; Engle BN; Ross EM; Costilla R; Moore SS; Corbet NJ; Allen JM; Laing AR; Fordyce G; Lyons RE; McGowan MR; Burns BM; Hayes BJ Genet Sel Evol; 2020 May; 52(1):28. PubMed ID: 32460805 [TBL] [Abstract][Full Text] [Related]
14. Use of gene expression and whole-genome sequence information to improve the accuracy of genomic prediction for carcass traits in Hanwoo cattle. de Las Heras-Saldana S; Lopez BI; Moghaddar N; Park W; Park JE; Chung KY; Lim D; Lee SH; Shin D; van der Werf JHJ Genet Sel Evol; 2020 Sep; 52(1):54. PubMed ID: 32993481 [TBL] [Abstract][Full Text] [Related]
15. Genomic prediction using preselected DNA variants from a GWAS with whole-genome sequence data in Holstein-Friesian cattle. Veerkamp RF; Bouwman AC; Schrooten C; Calus MP Genet Sel Evol; 2016 Dec; 48(1):95. PubMed ID: 27905878 [TBL] [Abstract][Full Text] [Related]
16. Including overseas performance information in genomic evaluations of Australian dairy cattle. Haile-Mariam M; Pryce JE; Schrooten C; Hayes BJ J Dairy Sci; 2015 May; 98(5):3443-59. PubMed ID: 25771052 [TBL] [Abstract][Full Text] [Related]
18. Improved precision of QTL mapping using a nonlinear Bayesian method in a multi-breed population leads to greater accuracy of across-breed genomic predictions. Kemper KE; Reich CM; Bowman PJ; Vander Jagt CJ; Chamberlain AJ; Mason BA; Hayes BJ; Goddard ME Genet Sel Evol; 2015 Apr; 47(1):29. PubMed ID: 25887988 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial sequence variants: testing imputation accuracy and their association with dairy cattle milk traits. Dorji J; Chamberlain AJ; Reich CM; VanderJagt CJ; Nguyen TV; Daetwyler HD; MacLeod IM Genet Sel Evol; 2024 Sep; 56(1):62. PubMed ID: 39266998 [TBL] [Abstract][Full Text] [Related]
20. Improving Genomic Prediction of Crossbred and Purebred Dairy Cattle. Khansefid M; Goddard ME; Haile-Mariam M; Konstantinov KV; Schrooten C; de Jong G; Jewell EG; O'Connor E; Pryce JE; Daetwyler HD; MacLeod IM Front Genet; 2020; 11():598580. PubMed ID: 33381150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]