These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 35183130)
1. The impact of chitosan on the early metabolomic response of wheat to infection by Fusarium graminearum. Deshaies M; Lamari N; Ng CKY; Ward P; Doohan FM BMC Plant Biol; 2022 Feb; 22(1):73. PubMed ID: 35183130 [TBL] [Abstract][Full Text] [Related]
2. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Kheiri A; Moosawi Jorf SA; Malihipour A; Saremi H; Nikkhah M Int J Biol Macromol; 2016 Dec; 93(Pt A):1261-1272. PubMed ID: 27664927 [TBL] [Abstract][Full Text] [Related]
3. Exogenous Abscisic Acid and Gibberellic Acid Elicit Opposing Effects on Fusarium graminearum Infection in Wheat. Buhrow LM; Cram D; Tulpan D; Foroud NA; Loewen MC Phytopathology; 2016 Sep; 106(9):986-96. PubMed ID: 27135677 [TBL] [Abstract][Full Text] [Related]
5. Thymol-based submicron emulsions exhibit antifungal activity against Fusarium graminearum and inhibit Fusarium head blight in wheat. Gill TA; Li J; Saenger M; Scofield SR J Appl Microbiol; 2016 Oct; 121(4):1103-16. PubMed ID: 27253757 [TBL] [Abstract][Full Text] [Related]
6. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623 [TBL] [Abstract][Full Text] [Related]
7. Biocontrol of Fusarium graminearum sensu stricto, Reduction of Deoxynivalenol Accumulation and Phytohormone Induction by Two Selected Antagonists. Palazzini J; Roncallo P; Cantoro R; Chiotta M; Yerkovich N; Palacios S; Echenique V; Torres A; Ramírez M; Karlovsky P; Chulze S Toxins (Basel); 2018 Feb; 10(2):. PubMed ID: 29461480 [TBL] [Abstract][Full Text] [Related]
8. Isobaric tags for relative and absolute quantification-based proteomic analysis of defense responses triggered by the fungal pathogen Fusarium graminearum in wheat. Wang B; Li X; Chen W; Kong L J Proteomics; 2019 Sep; 207():103442. PubMed ID: 31326557 [TBL] [Abstract][Full Text] [Related]
9. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance. Li J; Duan Y; Bian C; Pan X; Yao C; Wang J; Zhou M Pestic Biochem Physiol; 2019 Jan; 153():152-160. PubMed ID: 30744889 [TBL] [Abstract][Full Text] [Related]
10. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat. Gunupuru LR; Patel JS; Sumarah MW; Renaud JB; Mantin EG; Prithiviraj B PLoS One; 2019; 14(9):e0220562. PubMed ID: 31509543 [TBL] [Abstract][Full Text] [Related]
11. Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat? Gottwald S; Samans B; Lück S; Friedt W BMC Genomics; 2012 Aug; 13():369. PubMed ID: 22857656 [TBL] [Abstract][Full Text] [Related]
12. Effect of wheat infection timing on Fusarium head blight causal agents and secondary metabolites in grain. Beccari G; Arellano C; Covarelli L; Tini F; Sulyok M; Cowger C Int J Food Microbiol; 2019 Feb; 290():214-225. PubMed ID: 30366263 [TBL] [Abstract][Full Text] [Related]
13. Imidazolium salts with antifungal potential for the control of head blight of wheat caused by Fusarium graminearum. Ribas AD; Del Ponte EM; Dalbem AM; Dalla-Lana D; Bündchen C; Donato RK; Schrekker HS; Fuentefria AM J Appl Microbiol; 2016 Aug; 121(2):445-52. PubMed ID: 26972421 [TBL] [Abstract][Full Text] [Related]
14. Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Zhou W; Kolb FL; Riechers DE Genome; 2005 Oct; 48(5):770-80. PubMed ID: 16391683 [TBL] [Abstract][Full Text] [Related]
15. Integrated metabolo-transcriptomics and functional characterization reveals that the wheat auxin receptor TIR1 negatively regulates defense against Fusarium graminearum. Su P; Zhao L; Li W; Zhao J; Yan J; Ma X; Li A; Wang H; Kong L J Integr Plant Biol; 2021 Feb; 63(2):340-352. PubMed ID: 32678930 [TBL] [Abstract][Full Text] [Related]
16. At the scene of the crime: New insights into the role of weakly pathogenic members of the fusarium head blight disease complex. Tan J; Ameye M; Landschoot S; De Zutter N; De Saeger S; De Boevre M; Abdallah MF; Van der Lee T; Waalwijk C; Audenaert K Mol Plant Pathol; 2020 Dec; 21(12):1559-1572. PubMed ID: 32977364 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of chitosan nanoparticles and their effect on Fusarium head blight and oxidative activity in wheat. Kheiri A; Moosawi Jorf SA; Malihipour A; Saremi H; Nikkhah M Int J Biol Macromol; 2017 Sep; 102():526-538. PubMed ID: 28414109 [TBL] [Abstract][Full Text] [Related]
18. Characterization of QTL and eQTL controlling early Fusarium graminearum infection and deoxynivalenol levels in a Wuhan 1 x Nyubai doubled haploid wheat population. Fauteux F; Wang Y; Rocheleau H; Liu Z; Pan Y; Fedak G; McCartney C; Ouellet T BMC Plant Biol; 2019 Dec; 19(1):536. PubMed ID: 31795937 [TBL] [Abstract][Full Text] [Related]
19. Integrated transcriptome and hormone profiling highlight the role of multiple phytohormone pathways in wheat resistance against fusarium head blight. Wang L; Li Q; Liu Z; Surendra A; Pan Y; Li Y; Zaharia LI; Ouellet T; Fobert PR PLoS One; 2018; 13(11):e0207036. PubMed ID: 30403737 [TBL] [Abstract][Full Text] [Related]
20. Cell wall traits as potential resources to improve resistance of durum wheat against Fusarium graminearum. Lionetti V; Giancaspro A; Fabri E; Giove SL; Reem N; Zabotina OA; Blanco A; Gadaleta A; Bellincampi D BMC Plant Biol; 2015 Jan; 15():6. PubMed ID: 25597920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]