These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35183229)

  • 21. YEASTRACT+: a portal for cross-species comparative genomics of transcription regulation in yeasts.
    Monteiro PT; Oliveira J; Pais P; Antunes M; Palma M; Cavalheiro M; Galocha M; Godinho CP; Martins LC; Bourbon N; Mota MN; Ribeiro RA; Viana R; Sá-Correia I; Teixeira MC
    Nucleic Acids Res; 2020 Jan; 48(D1):D642-D649. PubMed ID: 31586406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: modeling and experiments reveal hierarchy in glucose repression.
    Prasad V; Venkatesh KV
    BMC Syst Biol; 2008 Nov; 2():97. PubMed ID: 19014615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modularity of the transcriptional response of protein complexes in yeast.
    Simonis N; Gonze D; Orsi C; van Helden J; Wodak SJ
    J Mol Biol; 2006 Oct; 363(2):589-610. PubMed ID: 16973176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction and application of a protein and genetic interaction network (yeast interactome).
    Stuart GR; Copeland WC; Strand MK
    Nucleic Acids Res; 2009 Apr; 37(7):e54. PubMed ID: 19273534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovering hotspots in functional genomic data superposed on 3D chromatin configuration reconstructions.
    Capurso D; Bengtsson H; Segal MR
    Nucleic Acids Res; 2016 Mar; 44(5):2028-35. PubMed ID: 26869583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative analysis of the transcription-factor gene regulatory networks of E. coli and S. cerevisiae.
    Guzmán-Vargas L; Santillán M
    BMC Syst Biol; 2008 Jan; 2():13. PubMed ID: 18237429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional networks: reverse-engineering gene regulation on a global scale.
    Chua G; Robinson MD; Morris Q; Hughes TR
    Curr Opin Microbiol; 2004 Dec; 7(6):638-46. PubMed ID: 15556037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression.
    Boorsma A; Lu XJ; Zakrzewska A; Klis FM; Bussemaker HJ
    PLoS One; 2008 Sep; 3(9):e3112. PubMed ID: 18769540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional profiling of cross pathway control in Neurospora crassa and comparative analysis of the Gcn4 and CPC1 regulons.
    Tian C; Kasuga T; Sachs MS; Glass NL
    Eukaryot Cell; 2007 Jun; 6(6):1018-29. PubMed ID: 17449655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast.
    Ludl AA; Michoel T
    Mol Omics; 2021 Apr; 17(2):241-251. PubMed ID: 33438713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcription factor regulatory modules provide the molecular mechanisms for functional redundancy observed among transcription factors in yeast.
    Yang TH
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):630. PubMed ID: 31881824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Paths Through the Yeast Regulatory Network in Different Physiological States.
    Lesk AM; Konagurthu AS
    J Mol Biol; 2021 Oct; 433(21):167181. PubMed ID: 34339724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-Wide Mapping of Binding Sites Reveals Multiple Biological Functions of the Transcription Factor Cst6p in Saccharomyces cerevisiae.
    Liu G; Bergenholm D; Nielsen J
    mBio; 2016 May; 7(3):. PubMed ID: 27143390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional regulation of the genes involved in protein metabolism and processing in Saccharomyces cerevisiae.
    Dikicioglu D; Nightingale DJH; Wood V; Lilley KS; Oliver SG
    FEMS Yeast Res; 2019 Mar; 19(2):. PubMed ID: 30753445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata.
    Lelandais G; Tanty V; Geneix C; Etchebest C; Jacq C; Devaux F
    Genome Biol; 2008; 9(11):R164. PubMed ID: 19025642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae.
    Herrgård MJ; Lee BS; Portnoy V; Palsson BØ
    Genome Res; 2006 May; 16(5):627-35. PubMed ID: 16606697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol.
    Samakkarn W; Ratanakhanokchai K; Soontorngun N
    Appl Environ Microbiol; 2021 Jul; 87(16):e0058821. PubMed ID: 34105981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionary rates and centrality in the yeast gene regulatory network.
    Jovelin R; Phillips PC
    Genome Biol; 2009; 10(4):R35. PubMed ID: 19358738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning transcriptional networks from the integration of ChIP-chip and expression data in a non-parametric model.
    Youn A; Reiss DJ; Stuetzle W
    Bioinformatics; 2010 Aug; 26(15):1879-86. PubMed ID: 20525821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling the regulatory network of histone acetylation in Saccharomyces cerevisiae.
    Pham H; Ferrari R; Cokus SJ; Kurdistani SK; Pellegrini M
    Mol Syst Biol; 2007; 3():153. PubMed ID: 18091724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.