BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35183438)

  • 21. The dosimetry of prostate brachytherapy-induced urethral strictures.
    Merrick GS; Butler WM; Tollenaar BG; Galbreath RW; Lief JH
    Int J Radiat Oncol Biol Phys; 2002 Feb; 52(2):461-8. PubMed ID: 11872293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation.
    Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C
    Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anatomic-based three-dimensional planning precludes use of catheter-delivered contrast for treatment of prostate cancer.
    Boersma M; Swanson G; Baacke D; Eng T
    Int J Radiat Oncol Biol Phys; 2008 May; 71(1):51-7. PubMed ID: 18164852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy.
    Dowling JA; Lambert J; Parker J; Salvado O; Fripp J; Capp A; Wratten C; Denham JW; Greer PB
    Int J Radiat Oncol Biol Phys; 2012 May; 83(1):e5-11. PubMed ID: 22330995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI.
    Mehralivand S; Yang D; Harmon SA; Xu D; Xu Z; Roth H; Masoudi S; Kesani D; Lay N; Merino MJ; Wood BJ; Pinto PA; Choyke PL; Turkbey B
    Abdom Radiol (NY); 2022 Apr; 47(4):1425-1434. PubMed ID: 35099572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks.
    Jimenez-Pastor A; Lopez-Gonzalez R; Fos-Guarinos B; Garcia-Castro F; Wittenberg M; Torregrosa-Andrés A; Marti-Bonmati L; Garcia-Fontes M; Duarte P; Gambini JP; Bittencourt LK; Kitamura FC; Venugopal VK; Mahajan V; Ros P; Soria-Olivas E; Alberich-Bayarri A
    Eur Radiol; 2023 Jul; 33(7):5087-5096. PubMed ID: 36690774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic resonance imaging (MRI) for localization of the prostatic apex: comparison to computed tomography (CT) and urethrography.
    Milosevic M; Voruganti S; Blend R; Alasti H; Warde P; McLean M; Catton P; Catton C; Gospodarowicz M
    Radiother Oncol; 1998 Jun; 47(3):277-84. PubMed ID: 9681891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of Motion-Insensitive T2-Weighted MRI Pulse Sequences for Visualization of the Prostatic Urethra During MR Simulation.
    Zakian KL; Wibmer A; Vargas HA; Alberts E; Kadbi M; Mychalczak B; Kollmeier M; Gorovets D; McBride S; Hunt M; Zelefsky MJ; Tyagi N
    Pract Radiat Oncol; 2019 Nov; 9(6):e534-e540. PubMed ID: 31252087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of a Deep Learning-based Algorithm for Post-Radiotherapy Prostate Cancer Local Recurrence Detection Using Biparametric MRI.
    Yilmaz EC; Harmon SA; Belue MJ; Merriman KM; Phelps TE; Lin Y; Garcia C; Hazen L; Patel KR; Merino MJ; Wood BJ; Choyke PL; Pinto PA; Citrin DE; Turkbey B
    Eur J Radiol; 2023 Nov; 168():111095. PubMed ID: 37717420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The added value of AI-based computer-aided diagnosis in classification of cancer at prostate MRI.
    Liu G; Pan S; Zhao R; Zhou H; Chen J; Zhou X; Xu J; Zhou Y; Xue W; Wu G
    Eur Radiol; 2023 Jul; 33(7):5118-5130. PubMed ID: 36725719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of automated segmentation techniques for magnetic resonance images of the prostate.
    Isaksson LJ; Pepa M; Summers P; Zaffaroni M; Vincini MG; Corrao G; Mazzola GC; Rotondi M; Lo Presti G; Raimondi S; Gandini S; Volpe S; Haron Z; Alessi S; Pricolo P; Mistretta FA; Luzzago S; Cattani F; Musi G; Cobelli O; Cremonesi M; Orecchia R; Marvaso G; Petralia G; Jereczek-Fossa BA
    BMC Med Imaging; 2023 Feb; 23(1):32. PubMed ID: 36774463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Label-driven magnetic resonance imaging (MRI)-transrectal ultrasound (TRUS) registration using weakly supervised learning for MRI-guided prostate radiotherapy.
    Zeng Q; Fu Y; Tian Z; Lei Y; Zhang Y; Wang T; Mao H; Liu T; Curran WJ; Jani AB; Patel P; Yang X
    Phys Med Biol; 2020 Jun; 65(13):135002. PubMed ID: 32330922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variability of manual segmentation of the prostate in axial T2-weighted MRI: A multi-reader study.
    Becker AS; Chaitanya K; Schawkat K; Muehlematter UJ; Hötker AM; Konukoglu E; Donati OF
    Eur J Radiol; 2019 Dec; 121():108716. PubMed ID: 31707168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An artificial intelligence framework for automatic segmentation and volumetry of vestibular schwannomas from contrast-enhanced T1-weighted and high-resolution T2-weighted MRI.
    Shapey J; Wang G; Dorent R; Dimitriadis A; Li W; Paddick I; Kitchen N; Bisdas S; Saeed SR; Ourselin S; Bradford R; Vercauteren T
    J Neurosurg; 2019 Dec; 134(1):171-179. PubMed ID: 31812137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fully automated quantification of in vivo viscoelasticity of prostate zones using magnetic resonance elastography with Dense U-net segmentation.
    Aldoj N; Biavati F; Dewey M; Hennemuth A; Asbach P; Sack I
    Sci Rep; 2022 Feb; 12(1):2001. PubMed ID: 35132102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Explainable AI for CNN-based prostate tumor segmentation in multi-parametric MRI correlated to whole mount histopathology.
    Gunashekar DD; Bielak L; Hägele L; Oerther B; Benndorf M; Grosu AL; Brox T; Zamboglou C; Bock M
    Radiat Oncol; 2022 Apr; 17(1):65. PubMed ID: 35366918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simple diagrammatic method to delineate male urethra in prostate cancer radiotherapy: an MRI based approach.
    Kataria T; Gupta D; Goyal S; Bisht SS; Chaudhary R; Narang K; Banerjee S; Basu T; Abhishek A; Sambasivam S; Vishnu NT
    Br J Radiol; 2016 Dec; 89(1068):20160348. PubMed ID: 27748126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of auto-segmentation accuracy of cloud-based artificial intelligence and atlas-based models.
    Urago Y; Okamoto H; Kaneda T; Murakami N; Kashihara T; Takemori M; Nakayama H; Iijima K; Chiba T; Kuwahara J; Katsuta S; Nakamura S; Chang W; Saitoh H; Igaki H
    Radiat Oncol; 2021 Sep; 16(1):175. PubMed ID: 34503533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autosegmentation of prostate anatomy for radiation treatment planning using deep decision forests of radiomic features.
    Macomber MW; Phillips M; Tarapov I; Jena R; Nori A; Carter D; Folgoc LL; Criminisi A; Nyflot MJ
    Phys Med Biol; 2018 Nov; 63(23):235002. PubMed ID: 30465543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined model-based and deep learning-based automated 3D zonal segmentation of the prostate on T2-weighted MR images: clinical evaluation.
    Rouvière O; Moldovan PC; Vlachomitrou A; Gouttard S; Riche B; Groth A; Rabotnikov M; Ruffion A; Colombel M; Crouzet S; Weese J; Rabilloud M
    Eur Radiol; 2022 May; 32(5):3248-3259. PubMed ID: 35001157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.