These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35183685)

  • 21. Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses.
    Kumar S; Asif MH; Chakrabarty D; Tripathi RD; Dubey RS; Trivedi PK
    J Hazard Mater; 2013 Mar; 248-249():228-37. PubMed ID: 23380449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens.
    Sharifan H; Moore J; Ma X
    Ecotoxicol Environ Saf; 2020 Mar; 191():110177. PubMed ID: 31958627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering Crops for the Future: A Phosphoproteomics Approach.
    Kumar V; Khare T; Sharma M; Wani SH
    Curr Protein Pept Sci; 2018 Feb; 19(4):413-426. PubMed ID: 28190387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR-Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review.
    Debbarma J; Sarki YN; Saikia B; Boruah HPD; Singha DL; Chikkaputtaiah C
    Mol Biotechnol; 2019 Feb; 61(2):153-172. PubMed ID: 30600447
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review.
    Rai KK; Pandey N; Meena RP; Rai SP
    Ecotoxicol Environ Saf; 2021 Jan; 208():111750. PubMed ID: 33396075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of nucleoside triphosphate hydrolase metallochaperones in making metalloenzymes.
    Vaccaro FA; Drennan CL
    Metallomics; 2022 Jun; 14(6):. PubMed ID: 35485745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Mechanisms of Nitric Oxide (NO) Signaling and Reactive Oxygen Species (ROS) Homeostasis during Abiotic Stresses in Plants.
    Wani KI; Naeem M; Castroverde CDM; Kalaji HM; Albaqami M; Aftab T
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects.
    Etesami H
    Ecotoxicol Environ Saf; 2018 Jan; 147():175-191. PubMed ID: 28843189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silicon: a duo synergy for regulating crop growth and hormonal signaling under abiotic stress conditions.
    Kim YH; Khan AL; Lee IJ
    Crit Rev Biotechnol; 2016 Dec; 36(6):1099-1109. PubMed ID: 26381374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanisms of plant metal tolerance and homeostasis.
    Clemens S
    Planta; 2001 Mar; 212(4):475-86. PubMed ID: 11525504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: a strategy to increase the benefits of soil phytoremediation.
    Fumagalli P; Comolli R; Ferrè C; Ghiani A; Gentili R; Citterio S
    J Environ Manage; 2014 Dec; 145():35-42. PubMed ID: 24992047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging Roles of microRNAs in Plant Heavy Metal Tolerance and Homeostasis.
    Ding Y; Ding L; Xia Y; Wang F; Zhu C
    J Agric Food Chem; 2020 Feb; 68(7):1958-1965. PubMed ID: 32003983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Safer food through plant science: reducing toxic element accumulation in crops.
    Clemens S
    J Exp Bot; 2019 Oct; 70(20):5537-5557. PubMed ID: 31408148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of silicon on heavy metal uptake at the soil-plant interphase: A review.
    Khan I; Awan SA; Rizwan M; Ali S; Hassan MJ; Brestic M; Zhang X; Huang L
    Ecotoxicol Environ Saf; 2021 Oct; 222():112510. PubMed ID: 34273846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential use of phytocystatins in crop improvement, with a particular focus on legumes.
    Kunert KJ; van Wyk SG; Cullis CA; Vorster BJ; Foyer CH
    J Exp Bot; 2015 Jun; 66(12):3559-70. PubMed ID: 25944929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deciphering the functional roles of transporter proteins in subcellular metal transportation of plants.
    Chen X; Zhao Y; Zhong Y; Chen J; Qi X
    Planta; 2023 Jun; 258(1):17. PubMed ID: 37314548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Medicinal Plant Growth in Heavy Metals Contaminated Soils: Responses to Metal Stress and Induced Risks to Human Health.
    Hlihor RM; Roșca M; Hagiu-Zaleschi L; Simion IM; Daraban GM; Stoleru V
    Toxics; 2022 Aug; 10(9):. PubMed ID: 36136464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants.
    Etesami H; Jeong BR
    Ecotoxicol Environ Saf; 2018 Jan; 147():881-896. PubMed ID: 28968941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of microRNAs in biotic and abiotic stress responses in crop plants.
    Kumar R
    Appl Biochem Biotechnol; 2014 Sep; 174(1):93-115. PubMed ID: 24869742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.