These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35183685)

  • 41. Medicinal Plant Growth in Heavy Metals Contaminated Soils: Responses to Metal Stress and Induced Risks to Human Health.
    Hlihor RM; Roșca M; Hagiu-Zaleschi L; Simion IM; Daraban GM; Stoleru V
    Toxics; 2022 Aug; 10(9):. PubMed ID: 36136464
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives.
    Anwar A; Kim JK
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32295026
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants.
    Etesami H; Jeong BR
    Ecotoxicol Environ Saf; 2018 Jan; 147():881-896. PubMed ID: 28968941
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of microRNAs in biotic and abiotic stress responses in crop plants.
    Kumar R
    Appl Biochem Biotechnol; 2014 Sep; 174(1):93-115. PubMed ID: 24869742
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plant Responses to Nanoparticle Stress.
    Hossain Z; Mustafa G; Komatsu S
    Int J Mol Sci; 2015 Nov; 16(11):26644-53. PubMed ID: 26561803
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants.
    Raza A; Charagh S; Zahid Z; Mubarik MS; Javed R; Siddiqui MH; Hasanuzzaman M
    Plant Cell Rep; 2021 Aug; 40(8):1513-1541. PubMed ID: 33034676
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.
    Etesami H; Maheshwari DK
    Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation.
    Seregin IV; Kozhevnikova AD
    Photosynth Res; 2021 Dec; 150(1-3):51-96. PubMed ID: 32653983
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular Interaction and Evolution of Jasmonate Signaling With Transport and Detoxification of Heavy Metals and Metalloids in Plants.
    Chen X; Jiang W; Tong T; Chen G; Zeng F; Jang S; Gao W; Li Z; Mak M; Deng F; Chen ZH
    Front Plant Sci; 2021; 12():665842. PubMed ID: 33936156
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root.
    Dubey S; Shri M; Misra P; Lakhwani D; Bag SK; Asif MH; Trivedi PK; Tripathi RD; Chakrabarty D
    Funct Integr Genomics; 2014 Jun; 14(2):401-17. PubMed ID: 24553786
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Class III peroxidase: an indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement.
    Kidwai M; Ahmad IZ; Chakrabarty D
    Plant Cell Rep; 2020 Nov; 39(11):1381-1393. PubMed ID: 32886139
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Avenues of the membrane transport system in adaptation of plants to abiotic stresses.
    Vishwakarma K; Mishra M; Patil G; Mulkey S; Ramawat N; Pratap Singh V; Deshmukh R; Kumar Tripathi D; Nguyen HT; Sharma S
    Crit Rev Biotechnol; 2019 Nov; 39(7):861-883. PubMed ID: 31362527
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Essential trace metals in plant responses to heat stress.
    Hendrix S; Verbruggen N; Cuypers A; Meyer AJ
    J Exp Bot; 2022 Mar; 73(6):1775-1788. PubMed ID: 35018415
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to Lead (Pb) stress with next generation sequencing.
    Wang Y; Xu L; Chen Y; Shen H; Gong Y; Limera C; Liu L
    PLoS One; 2013; 8(6):e66539. PubMed ID: 23840502
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genome-Wide Association Study Reveals Complex Genetic Architecture of Cadmium and Mercury Accumulation and Tolerance Traits in
    Paape T; Heiniger B; Santo Domingo M; Clear MR; Lucas MM; Pueyo JJ
    Front Plant Sci; 2021; 12():806949. PubMed ID: 35154199
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanistic Insights into the Metal-Dependent Activation of Zn
    Jordan MR; Wang J; Weiss A; Skaar EP; Capdevila DA; Giedroc DP
    Inorg Chem; 2019 Oct; 58(20):13661-13672. PubMed ID: 31247880
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land.
    Yan A; Wang Y; Tan SN; Mohd Yusof ML; Ghosh S; Chen Z
    Front Plant Sci; 2020; 11():359. PubMed ID: 32425957
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa.
    Kayum MA; Jung HJ; Park JI; Ahmed NU; Saha G; Yang TJ; Nou IS
    Mol Genet Genomics; 2015 Feb; 290(1):79-95. PubMed ID: 25149146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants.
    Jogawat A; Yadav B; Chhaya ; Narayan OP
    Physiol Plant; 2021 Sep; 173(1):259-275. PubMed ID: 33586164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.