These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35183745)

  • 1. Neural correlates of individual differences in predicting ambiguous sounds comprehension level.
    Lin Y; Tsao Y; Hsieh PJ
    Neuroimage; 2022 May; 251():119012. PubMed ID: 35183745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferior frontal gyrus activation predicts individual differences in perceptual learning of cochlear-implant simulations.
    Eisner F; McGettigan C; Faulkner A; Rosen S; Scott SK
    J Neurosci; 2010 May; 30(21):7179-86. PubMed ID: 20505085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer of auditory perceptual learning with spectrally reduced speech to speech and nonspeech tasks: implications for cochlear implants.
    Loebach JL; Pisoni DB; Svirsky MA
    Ear Hear; 2009 Dec; 30(6):662-74. PubMed ID: 19773659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speech comprehension aided by multiple modalities: behavioural and neural interactions.
    McGettigan C; Faulkner A; Altarelli I; Obleser J; Baverstock H; Scott SK
    Neuropsychologia; 2012 Apr; 50(5):762-76. PubMed ID: 22266262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.
    Berezutskaya J; Freudenburg ZV; Güçlü U; van Gerven MAJ; Ramsey NF
    J Neurosci; 2017 Aug; 37(33):7906-7920. PubMed ID: 28716965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of subjective comprehension of noise-vocoded speech.
    Murai SA; Riquimaroux H
    Hear Res; 2021 Jun; 405():108249. PubMed ID: 33894680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural correlates of adaptation in freely-moving normal hearing subjects under cochlear implant acoustic simulations.
    Smalt CJ; Gonzalez-Castillo J; Talavage TM; Pisoni DB; Svirsky MA
    Neuroimage; 2013 Nov; 82():500-9. PubMed ID: 23751864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus-dependent activations and attention-related modulations in the auditory cortex: a meta-analysis of fMRI studies.
    Alho K; Rinne T; Herron TJ; Woods DL
    Hear Res; 2014 Jan; 307():29-41. PubMed ID: 23938208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term changes in cortical representation through perceptual learning of spectrally degraded speech.
    Murai SA; Riquimaroux H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jan; 209(1):163-172. PubMed ID: 36464716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural Mechanism Underling Comprehension of Narrative Speech and Its Heritability: Study in a Large Population.
    Babajani-Feremi A
    Brain Topogr; 2017 Sep; 30(5):592-609. PubMed ID: 28214981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehension of degraded speech sounds with m-sequence modulation: an fMRI study.
    Takeichi H; Koyama S; Terao A; Takeuchi F; Toyosawa Y; Murohashi H
    Neuroimage; 2010 Feb; 49(3):2697-706. PubMed ID: 19878726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluency-dependent cortical activation associated with speech production and comprehension in second language learners.
    Shimada K; Hirotani M; Yokokawa H; Yoshida H; Makita K; Yamazaki-Murase M; Tanabe HC; Sadato N
    Neuroscience; 2015 Aug; 300():474-92. PubMed ID: 26026679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is it still speech? Different processing strategies in learning to discriminate stimuli in the transition from speech to non-speech including feedback evaluation.
    Weis T; Krick CM; Reith W; Lachmann T
    Brain Cogn; 2018 Aug; 125():1-13. PubMed ID: 29800729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in Hearing Acuity among "Normal-Hearing" Young Adults Modulate the Neural Basis for Speech Comprehension.
    Lee YS; Wingfield A; Min NE; Kotloff E; Grossman M; Peelle JE
    eNeuro; 2018; 5(3):. PubMed ID: 29911176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory-motor networks involved in speech production and motor control: an fMRI study.
    Behroozmand R; Shebek R; Hansen DR; Oya H; Robin DA; Howard MA; Greenlee JD
    Neuroimage; 2015 Apr; 109():418-28. PubMed ID: 25623499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic richness modulates the neural networks supporting intelligible speech processing.
    Lee YS; Min NE; Wingfield A; Grossman M; Peelle JE
    Hear Res; 2016 Mar; 333():108-117. PubMed ID: 26723103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-echo fMRI can detect activations in inferior temporal lobe during intelligible speech comprehension.
    Halai AD; Parkes LM; Welbourne SR
    Neuroimage; 2015 Nov; 122():214-21. PubMed ID: 26037055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of non-speech sound memory in postlingual deafness: implications for cochlear implant rehabilitation.
    Lazard DS; Giraud AL; Truy E; Lee HJ
    Neuropsychologia; 2011 Jul; 49(9):2475-82. PubMed ID: 21557954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical Activation Patterns Correlate with Speech Understanding After Cochlear Implantation.
    Olds C; Pollonini L; Abaya H; Larky J; Loy M; Bortfeld H; Beauchamp MS; Oghalai JS
    Ear Hear; 2016; 37(3):e160-72. PubMed ID: 26709749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical and perceptual factors shape the neural mechanisms that integrate audiovisual signals in speech comprehension.
    Lee H; Noppeney U
    J Neurosci; 2011 Aug; 31(31):11338-50. PubMed ID: 21813693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.