These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35184197)

  • 1. Rootstock-scion exchanging mRNAs participate in the pathways of amino acids and fatty acid metabolism in cucumber under early chilling stress.
    Liu W; Wang Q; Zhang R; Liu M; Wang C; Liu Z; Xiang C; Lu X; Zhang X; Li X; Wang T; Gao L; Zhang W
    Hortic Res; 2022 Feb; 9():. PubMed ID: 35184197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salicylic Acid Is Involved in Rootstock-Scion Communication in Improving the Chilling Tolerance of Grafted Cucumber.
    Fu X; Feng YQ; Zhang XW; Zhang YY; Bi HG; Ai XZ
    Front Plant Sci; 2021; 12():693344. PubMed ID: 34249065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-distance control of pumpkin rootstock over cucumber scion under drought stress as revealed by transcriptome sequencing and mobile mRNAs identifications.
    Davoudi M; Song M; Zhang M; Chen J; Lou Q
    Hortic Res; 2022 Jan; 9():. PubMed ID: 35043177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic and Physiological Analysis Reveal That α-Linolenic Acid Biosynthesis Responds to Early Chilling Tolerance in Pumpkin Rootstock Varieties.
    Liu W; Zhang R; Xiang C; Zhang R; Wang Q; Wang T; Li X; Lu X; Gao S; Liu Z; Liu M; Gao L; Zhang W
    Front Plant Sci; 2021; 12():669565. PubMed ID: 33968120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H
    Lv C; Li F; Ai X; Bi H
    Plant Cell Rep; 2022 Apr; 41(4):1115-1130. PubMed ID: 35260922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Long-Distance Transmissible mRNA between Scion and Rootstock in Cucurbit Seedling Heterografts.
    Liu W; Xiang C; Li X; Wang T; Lu X; Liu Z; Gao L; Zhang W
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32722102
    [No Abstract]   [Full Text] [Related]  

  • 7. Abscisic Acid Mediates Salicylic Acid Induced Chilling Tolerance of Grafted Cucumber by Activating H
    Zhang Y; Fu X; Feng Y; Zhang X; Bi H; Ai X
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grafting Watermelon Onto Pumpkin Increases Chilling Tolerance by Up Regulating
    Lu J; Cheng F; Huang Y; Bie Z
    Front Plant Sci; 2021; 12():812396. PubMed ID: 35242149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome analysis of grafting to improve chilling tolerance of cucumber.
    Fu X; Lv CY; Zhang YY; Ai XZ; Bi HG
    Protoplasma; 2023 Sep; 260(5):1349-1364. PubMed ID: 36949344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial-Temporal Response of Reactive Oxygen Species and Salicylic Acid Suggest Their Interaction in Pumpkin Rootstock-Induced Chilling Tolerance in Watermelon Plants.
    Cheng F; Gao M; Lu J; Huang Y; Bie Z
    Antioxidants (Basel); 2021 Dec; 10(12):. PubMed ID: 34943126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pumpkin CmHKT1;1 Controls Shoot Na⁺ Accumulation via Limiting Na⁺ Transport from Rootstock to Scion in Grafted Cucumber.
    Sun J; Cao H; Cheng J; He X; Sohail H; Niu M; Huang Y; Bie Z
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30200653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome Analysis Reveals the Different Response to Toxic Stress in Rootstock Grafted and Non-Grafted Cucumber Seedlings.
    Xiao X; Lv J; Xie J; Feng Z; Ma N; Li J; Yu J; Calderón-Urrea A
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of differentially expressed microRNAs induced by rootstocks and silicon on improving chilling tolerance of cucumber seedlings (Cucumis sativus L.).
    Ma Q; Niu C; Wang C; Chen C; Li Y; Wei M
    BMC Genomics; 2023 May; 24(1):250. PubMed ID: 37165319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics analysis of compatibility and incompatibility in grafted cucumber seedlings.
    Xu Q; Guo SR; Li L; An YH; Shu S; Sun J
    Plant Physiol Biochem; 2016 Aug; 105():21-28. PubMed ID: 27070289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of grafting with pumpkin rootstock on carbohydrate metabolism in cucumber seedlings under Ca(NO3)2 stress.
    Xing WW; Li L; Gao P; Li H; Shao QS; Shu S; Sun J; Guo SR
    Plant Physiol Biochem; 2015 Feb; 87():124-32. PubMed ID: 25579659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic Responses to Chilling Reveal Potential Chilling Tolerance Mechanisms in Cucumber.
    Wang X; Mi S; Miao H
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of reference genes for quantitative real-time PCR analysis in cucumber (
    Miao L; Qin X; Gao L; Li Q; Li S; He C; Li Y; Yu X
    PeerJ; 2019; 7():e6536. PubMed ID: 31024757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of metabolic, physiological and hormonal responses in the graft-compatible process of cucumber/pumpkin combinations was revealed through the integrative analysis of mRNA and miRNA expression.
    Ren Y; Xu Q; Wang L; Guo S; Shu S; Lu N; Sun J
    Plant Physiol Biochem; 2018 Aug; 129():368-380. PubMed ID: 29940473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential impact of low temperature on fatty acid unsaturation and lipoxygenase activity in figleaf gourd and cucumber roots.
    Lee SH; Ahn SJ; Im YJ; Cho K; Chung GC; Cho BH; Han O
    Biochem Biophys Res Commun; 2005 May; 330(4):1194-8. PubMed ID: 15823569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic and functional characterization reveals CsHAK5;3 as a key player in K
    Peng Y; Cao H; Peng Z; Zhou L; Sohail H; Cui L; Yang L; Huang Y; Bie Z
    Plant Sci; 2023 Jan; 326():111509. PubMed ID: 36283579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.