BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35184212)

  • 1. Transcriptomes across fertilization and seed development in the water lily Nymphaea thermarum (Nymphaeales): evidence for epigenetic patterning during reproduction.
    Povilus RA; Friedman WE
    Plant Reprod; 2022 Sep; 35(3):161-178. PubMed ID: 35184212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floral biology and ovule and seed ontogeny of Nymphaea thermarum, a water lily at the brink of extinction with potential as a model system for basal angiosperms.
    Povilus RA; Losada JM; Friedman WE
    Ann Bot; 2015 Feb; 115(2):211-26. PubMed ID: 25497514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water lily (
    Povilus RA; DaCosta JM; Grassa C; Satyaki PRV; Moeglein M; Jaenisch J; Xi Z; Mathews S; Gehring M; Davis CC; Friedman WE
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8649-8656. PubMed ID: 32234787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for parent-of-origin effects and interparental conflict in seeds of an ancient flowering plant lineage.
    Povilus RA; Diggle PK; Friedman WE
    Proc Biol Sci; 2018 Feb; 285(1872):. PubMed ID: 29436495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination.
    Dong S; Zhao C; Chen F; Liu Y; Zhang S; Wu H; Zhang L; Liu Y
    BMC Genomics; 2018 Aug; 19(1):614. PubMed ID: 30107780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The water lily genome and the early evolution of flowering plants.
    Zhang L; Chen F; Zhang X; Li Z; Zhao Y; Lohaus R; Chang X; Dong W; Ho SYW; Liu X; Song A; Chen J; Guo W; Wang Z; Zhuang Y; Wang H; Chen X; Hu J; Liu Y; Qin Y; Wang K; Dong S; Liu Y; Zhang S; Yu X; Wu Q; Wang L; Yan X; Jiao Y; Kong H; Zhou X; Yu C; Chen Y; Li F; Wang J; Chen W; Chen X; Jia Q; Zhang C; Jiang Y; Zhang W; Liu G; Fu J; Chen F; Ma H; Van de Peer Y; Tang H
    Nature; 2020 Jan; 577(7788):79-84. PubMed ID: 31853069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydatellaceae are water lilies with gymnospermous tendencies.
    Friedman WE
    Nature; 2008 May; 453(7191):94-7. PubMed ID: 18354395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproductive barrier and genomic imprinting in the endosperm of flowering plants.
    Kinoshita T
    Genes Genet Syst; 2007 Jun; 82(3):177-86. PubMed ID: 17660688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm.
    Goremykin VV; Hirsch-Ernst KI; Wölfl S; Hellwig FH
    Mol Biol Evol; 2004 Jul; 21(7):1445-54. PubMed ID: 15084683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycomb group gene function in sexual and asexual seed development in angiosperms.
    Rodrigues JC; Luo M; Berger F; Koltunow AM
    Sex Plant Reprod; 2010 Jun; 23(2):123-33. PubMed ID: 20039181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative ovule and megagametophyte development in Hydatellaceae and water lilies reveal a mosaic of features among the earliest angiosperms.
    Rudall PJ; Remizowa MV; Beer AS; Bradshaw E; Stevenson DW; Macfarlane TD; Tuckett RE; Yadav SR; Sokoloff DD
    Ann Bot; 2008 May; 101(7):941-56. PubMed ID: 18378513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic regulation of seed-specific gene expression by DNA methylation valleys in castor bean.
    Han B; Wu D; Zhang Y; Li DZ; Xu W; Liu A
    BMC Biol; 2022 Mar; 20(1):57. PubMed ID: 35227267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seed development in Trimenia (Trimeniaceae) and its bearing on the evolution of embryo-nourishing strategies in early flowering plant lineages.
    Friedman WE; Bachelier JB
    Am J Bot; 2013 May; 100(5):906-15. PubMed ID: 23624925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspective: the origin of flowering plants and their reproductive biology--a tale of two phylogenies.
    Friedman WE; Floyd SK
    Evolution; 2001 Feb; 55(2):217-31. PubMed ID: 11308081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphophysiological dormancy in the basal angiosperm order Nymphaeales.
    Dalziell EL; Baskin CC; Baskin JM; Young RE; Dixon KW; Merritt DJ
    Ann Bot; 2019 Jan; 123(1):95-106. PubMed ID: 30052753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endosperm gene imprinting and seed development.
    Huh JH; Bauer MJ; Hsieh TF; Fischer R
    Curr Opin Genet Dev; 2007 Dec; 17(6):480-5. PubMed ID: 17962010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonged embryogenesis in Austrobaileya scandens (Austrobaileyaceae): its ecological and evolutionary significance.
    Losada JM; Bachelier JB; Friedman WE
    New Phytol; 2017 Jul; 215(2):851-864. PubMed ID: 28631322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maternal regulation of seed growth and patterning in flowering plants.
    Phillips AR; Evans MMS
    Curr Top Dev Biol; 2020; 140():257-282. PubMed ID: 32591076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embryology in Trithuria submersa (Hydatellaceae) and relationships between embryo, endosperm, and perisperm in early-diverging flowering plants.
    Friedman WE; Bachelier JB; Hormaza JI
    Am J Bot; 2012 Jun; 99(6):1083-95. PubMed ID: 22688427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic dynamics during flowering plant reproduction: evidence for reprogramming?
    Gehring M
    New Phytol; 2019 Oct; 224(1):91-96. PubMed ID: 31002174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.