BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 35184277)

  • 1. Joint gene network construction by single-cell RNA sequencing data.
    Dong M; He Y; Jiang Y; Zou F
    Biometrics; 2023 Jun; 79(2):915-925. PubMed ID: 35184277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks.
    Mao G; Pang Z; Zuo K; Wang Q; Pei X; Chen X; Liu J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37985457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data.
    Chen G; Liu ZP
    Bioinformatics; 2022 Sep; 38(19):4522-4529. PubMed ID: 35961023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flexible network-based imputing-and-fusing approach towards the identification of cell types from single-cell RNA-seq data.
    Qi Y; Guo Y; Jiao H; Shang X
    BMC Bioinformatics; 2020 Jun; 21(1):240. PubMed ID: 32527285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bayesian factorization method to recover single-cell RNA sequencing data.
    Wen ZH; Langsam JL; Zhang L; Shen W; Zhou X
    Cell Rep Methods; 2022 Jan; 2(1):100133. PubMed ID: 35474868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.
    Huang Z; Wang J; Lu X; Mohd Zain A; Yu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data.
    Chen S; Yan X; Zheng R; Li M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36567258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepDRIM: a deep neural network to reconstruct cell-type-specific gene regulatory network using single-cell RNA-seq data.
    Chen J; Cheong C; Lan L; Zhou X; Liu J; Lyu A; Cheung WK; Zhang L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34424948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation Imputation for Single-Cell RNA-seq.
    Gan L; Vinci G; Allen GI
    J Comput Biol; 2022 May; 29(5):465-482. PubMed ID: 35325552
    [No Abstract]   [Full Text] [Related]  

  • 11. Improvements Achieved by Multiple Imputation for Single-Cell RNA-Seq Data in Clustering Analysis and Differential Expression Analysis.
    Zhu M; Lai Y
    J Comput Biol; 2022 Jul; 29(7):634-649. PubMed ID: 35575729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking imputation methods for network inference using a novel method of synthetic scRNA-seq data generation.
    Lasri A; Shahrezaei V; Sturrock M
    BMC Bioinformatics; 2022 Jun; 23(1):236. PubMed ID: 35715748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sparse Bayesian factor model for the construction of gene co-expression networks from single-cell RNA sequencing count data.
    Sekula M; Gaskins J; Datta S
    BMC Bioinformatics; 2020 Aug; 21(1):361. PubMed ID: 32811424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference.
    Aubin-Frankowski PC; Vert JP
    Bioinformatics; 2020 Sep; 36(18):4774-4780. PubMed ID: 33026066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data.
    Dadaneh SZ; de Figueiredo P; Sze SH; Zhou M; Qian X
    BMC Genomics; 2020 Sep; 21(Suppl 9):585. PubMed ID: 32900358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-specific network constructed by single-cell RNA sequencing data.
    Dai H; Li L; Zeng T; Chen L
    Nucleic Acids Res; 2019 Jun; 47(11):e62. PubMed ID: 30864667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. dynDeepDRIM: a dynamic deep learning model to infer direct regulatory interactions using time-course single-cell gene expression data.
    Xu Y; Chen J; Lyu A; Cheung WK; Zhang L
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36168811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. netNMF-sc: leveraging gene-gene interactions for imputation and dimensionality reduction in single-cell expression analysis.
    Elyanow R; Dumitrascu B; Engelhardt BE; Raphael BJ
    Genome Res; 2020 Feb; 30(2):195-204. PubMed ID: 31992614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications.
    Van den Berge K; Perraudeau F; Soneson C; Love MI; Risso D; Vert JP; Robinson MD; Dudoit S; Clement L
    Genome Biol; 2018 Feb; 19(1):24. PubMed ID: 29478411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.