These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 35184277)

  • 21. netNMF-sc: leveraging gene-gene interactions for imputation and dimensionality reduction in single-cell expression analysis.
    Elyanow R; Dumitrascu B; Engelhardt BE; Raphael BJ
    Genome Res; 2020 Feb; 30(2):195-204. PubMed ID: 31992614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications.
    Van den Berge K; Perraudeau F; Soneson C; Love MI; Risso D; Vert JP; Robinson MD; Dudoit S; Clement L
    Genome Biol; 2018 Feb; 19(1):24. PubMed ID: 29478411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A systematic evaluation of single-cell RNA-sequencing imputation methods.
    Hou W; Ji Z; Ji H; Hicks SC
    Genome Biol; 2020 Aug; 21(1):218. PubMed ID: 32854757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. STGRNS: an interpretable transformer-based method for inferring gene regulatory networks from single-cell transcriptomic data.
    Xu J; Zhang A; Liu F; Zhang X
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37004161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene Regulatory Network Inference Using Convolutional Neural Networks from scRNA-seq Data.
    Mao G; Pang Z; Zuo K; Liu J
    J Comput Biol; 2023 May; 30(5):619-631. PubMed ID: 36877552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data.
    Shi Y; Wan J; Zhang X; Yin Y
    Comput Biol Med; 2023 Sep; 164():107263. PubMed ID: 37531858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CDSImpute: An ensemble similarity imputation method for single-cell RNA sequence dropouts.
    Azim R; Wang S; Dipu SA
    Comput Biol Med; 2022 Jul; 146():105658. PubMed ID: 35751187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Debiased personalized gene coexpression networks for population-scale scRNA-seq data.
    Lu S; Keleş S
    Genome Res; 2023 Jun; 33(6):932-947. PubMed ID: 37295843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DeepIMAGER: Deeply Analyzing Gene Regulatory Networks from scRNA-seq Data.
    Zhou X; Pan J; Chen L; Zhang S; Chen Y
    Biomolecules; 2024 Jun; 14(7):. PubMed ID: 39062480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bayesian-frequentist hybrid inference framework for single cell RNA-seq analyses.
    Han G; Yan D; Sun Z; Fang J; Chang X; Wilson L; Liu Y
    Hum Genomics; 2024 Jun; 18(1):69. PubMed ID: 38902839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data.
    Fan J; Lyu Y; Zhang Q; Wang X; Li M; Xiao R
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kernelized multiview signed graph learning for single-cell RNA sequencing data.
    Karaaslanli A; Saha S; Maiti T; Aviyente S
    BMC Bioinformatics; 2023 Apr; 24(1):127. PubMed ID: 37016281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-cell RNA sequencing data imputation using bi-level feature propagation.
    Lee J; Yun S; Kim Y; Chen T; Kellis M; Park C
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38706317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. JOINT for large-scale single-cell RNA-sequencing analysis via soft-clustering and parallel computing.
    Cui T; Wang T
    BMC Genomics; 2021 Jan; 22(1):47. PubMed ID: 33430769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data.
    Xu J; Xu J; Meng Y; Lu C; Cai L; Zeng X; Nussinov R; Cheng F
    Cell Rep Methods; 2023 Jan; 3(1):100382. PubMed ID: 36814845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ScLRTC: imputation for single-cell RNA-seq data via low-rank tensor completion.
    Pan X; Li Z; Qin S; Yu M; Hu H
    BMC Genomics; 2021 Nov; 22(1):860. PubMed ID: 34844559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-throughput single-cell RNA-seq data imputation and characterization with surrogate-assisted automated deep learning.
    Li X; Li S; Huang L; Zhang S; Wong KC
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34553763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DAE-TPGM: A deep autoencoder network based on a two-part-gamma model for analyzing single-cell RNA-seq data.
    Zhao S; Zhang L; Liu X
    Comput Biol Med; 2022 Jul; 146():105578. PubMed ID: 35569337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-cell RNA-seq denoising using a deep count autoencoder.
    Eraslan G; Simon LM; Mircea M; Mueller NS; Theis FJ
    Nat Commun; 2019 Jan; 10(1):390. PubMed ID: 30674886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.