These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 35184549)

  • 21. Enhanced Raman scattering from aromatic dithiols electrosprayed into plasmonic nanojunctions.
    El-Khoury PZ; Johnson GE; Novikova IV; Gong Y; Joly AG; Evans JE; Zamkov M; Laskin J; Hess WP
    Faraday Discuss; 2015; 184():339-57. PubMed ID: 26406784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using α-Type MoO
    Yang J; Dang T; Ma S; Tang S; Ding Y; Seki M; Tabata H; Matsui H
    ACS Appl Mater Interfaces; 2024 Aug; 16(31):41257-41270. PubMed ID: 39048517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
    Hossain MK; Drmosh QA; Mohamedkhair AK
    Chem Asian J; 2021 Jul; 16(13):1807-1819. PubMed ID: 34009749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laser-Induced Reactions of 4-Aminobenzenthiol Species Adsorbed on Ag, Au, and Cu Plasmonic Structures Followed by SERS Spectroscopy. The Role of Substrate and Excitation Energy - Surface-Complex Photochemistry and Plasmonic Catalysis.
    Kopal I; Švecová M; Jeřábek V; Palounek D; Čapková T; Michalcová A; Lapčák L; Matějka P; Dendisová M
    ACS Omega; 2024 Feb; 9(5):6005-6017. PubMed ID: 38343947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A single spectroscopic probe for in situ analysis of electronic and vibrational information at both sides of electrode/electrolyte interfaces using surface-enhanced Raman scattering.
    Isogai T; Motobayashi K; Ikeda K
    J Chem Phys; 2021 Nov; 155(20):204702. PubMed ID: 34852477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zaleski S; Wilson AJ; Mattei M; Chen X; Goubert G; Cardinal MF; Willets KA; Van Duyne RP
    Acc Chem Res; 2016 Sep; 49(9):2023-30. PubMed ID: 27602428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-scale self-organized gold nanostructures with bidirectional plasmon resonances for SERS.
    Schreiber B; Gkogkou D; Dedelaite L; Kerbusch J; Hübner R; Sheremet E; Zahn DRT; Ramanavicius A; Facsko S; Rodriguez RD
    RSC Adv; 2018 Jun; 8(40):22569-22576. PubMed ID: 35539709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-fine electrochemical tuning of hybridized plasmon modes for ultimate light confinement.
    Oikawa S; Minamimoto H; Ohnuki A; Murakoshi K
    Nanoscale; 2020 Jun; 12(21):11593-11600. PubMed ID: 32432305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface plasmonic coupling of Au nanoparticle arrays with ultrathin hexagonal boron nitride nanosheets for Raman enhancement.
    Gao J; Zhan W; Xiao Y; Zhu X; Gao W; Yin H
    J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37260009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering.
    Dos Santos DP; Temperini MLA; Brolo AG
    Acc Chem Res; 2019 Feb; 52(2):456-464. PubMed ID: 30668089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ monitoring of silver adsorption on assembled gold nanorods by surface-enhanced Raman scattering.
    Zhao F; Wang X; Zhang Y; Lu X; Xie H; Xu B; Ye W; Ni W
    Nanotechnology; 2020 May; 31(29):295601. PubMed ID: 32217813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voltage Modulation of Nanoplasmonic Metal Luminescence from Nano-Optoelectrodes in Electrolytes.
    Zhao Y; Xiao C; Mejia E; Garg A; Song J; Agrawal A; Zhou W
    ACS Nano; 2023 May; 17(9):8634-8645. PubMed ID: 37093562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Chemist's View on Electronic and Steric Effects of Surface Ligands on Plasmonic Metal Nanostructures.
    Kim Y; Ji S; Nam JM
    Acc Chem Res; 2023 Aug; 56(16):2139-2150. PubMed ID: 37522593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering.
    Lee H; Lee JH; Jin SM; Suh YD; Nam JM
    Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Charge transfer at the nanoscale and the role of the out-of-plane vibrations in the selection rules of surface-enhanced Raman scattering.
    Aranda D; Valdivia S; Avila FJ; Soto J; Otero JC; López-Tocón I
    Phys Chem Chem Phys; 2018 Nov; 20(46):29430-29439. PubMed ID: 30452048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids.
    Seo S; Chang TW; Liu GL
    Sci Rep; 2018 Feb; 8(1):3002. PubMed ID: 29445092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing dipole and quadrupole resonance mode in non-plasmonic nanowire using Raman spectroscopy.
    Raha S; Mitra S; Kumar Mondal P; Biswas S; D Holmes J; Singha A
    Nanotechnology; 2020 Jun; 31(42):425201. PubMed ID: 32541104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.