These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35184557)

  • 61. Exploring the contribution of charged species at the outer surface to the ion current signal of nanopores: a theoretical study.
    Mao H; Ma Q; Xu H; Xu L; Du Q; Gao P; Xia F
    Analyst; 2021 Aug; 146(16):5089-5094. PubMed ID: 34297030
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ionic selectivity of single nanochannels.
    Vlassiouk I; Smirnov S; Siwy Z
    Nano Lett; 2008 Jul; 8(7):1978-85. PubMed ID: 18558784
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Maximizing ion current rectification in a bipolar conical nanopore fluidic diode using optimum junction location.
    Singh KP
    Phys Chem Chem Phys; 2016 Oct; 18(40):27958-27966. PubMed ID: 27711715
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients.
    Zhang Y; Wu G; Si W; Ma J; Yuan Z; Xie X; Liu L; Sha J; Li D; Chen Y
    Nanoscale; 2017 Jan; 9(2):930-939. PubMed ID: 28000822
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tuning ion transport and selectivity by a salt gradient in a charged nanopore.
    Yeh LH; Hughes C; Zeng Z; Qian S
    Anal Chem; 2014 Mar; 86(5):2681-6. PubMed ID: 24484296
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influence of concentration polarization on DNA translocation through a nanopore.
    Zhai S; Zhao H
    Phys Rev E; 2016 May; 93(5):052409. PubMed ID: 27300926
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tunable Nanopore Arrays as the Basis for Ionic Circuits.
    Lucas RA; Siwy ZS
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56622-56631. PubMed ID: 33283510
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Access resistance in protein nanopores. A structure-based computational approach.
    Aguilella-Arzo M; Aguilella VM
    Bioelectrochemistry; 2020 Feb; 131():107371. PubMed ID: 31513986
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A method to tune the ionic current rectification of track-etched nanopores by using surfactant.
    Wang L; Yan Y; Xie Y; Chen L; Xue J; Yan S; Wang Y
    Phys Chem Chem Phys; 2011 Jan; 13(2):576-81. PubMed ID: 21038062
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cation pumping against a concentration gradient in conical nanopores characterized by load capacitors.
    Cervera J; Ramirez P; Nasir S; Ali M; Ensinger W; Siwy ZS; Mafe S
    Bioelectrochemistry; 2023 Aug; 152():108445. PubMed ID: 37086711
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Probing access resistance of solid-state nanopores with a scanning-probe microscope tip.
    Hyun C; Rollings R; Li J
    Small; 2012 Feb; 8(3):384-92. PubMed ID: 22287084
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tuning Ion Transport through a Nanopore by Self-Oscillating Chemical Reactions.
    Zhang X; Han X; Qian S; Yang Y; Hu N
    Anal Chem; 2019 Apr; 91(7):4600-4607. PubMed ID: 30832478
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of extreme pH on ionic transport through protein nanopores: the role of ion diffusion and charge exclusion.
    Queralt-Martín M; Peiró-González C; Aguilella-Arzo M; Alcaraz A
    Phys Chem Chem Phys; 2016 Aug; 18(31):21668-75. PubMed ID: 27464527
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Memristive Characteristics in an Asymmetrically Charged Nanochannel.
    Wang W; Liang Y; Ma Y; Shi D; Xie Y
    J Phys Chem Lett; 2024 Jul; 15(26):6852-6858. PubMed ID: 38917304
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Enhanced Ionic Current Rectification through Innovative Integration of Polyelectrolyte Bilayers and Charged-Wall Smart Nanochannels.
    Dartoomi H; Khatibi M; Ashrafizadeh SN
    Anal Chem; 2023 Jan; 95(2):1522-1531. PubMed ID: 36537870
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties.
    Ali M; Ahmed I; Ramirez P; Nasir S; Cervera J; Niemeyer CM; Ensinger W
    Nanoscale; 2016 Apr; 8(16):8583-90. PubMed ID: 27050623
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of Membrane Thickness on Ion Transport in pH-Regulated Zero-Depth Interfacial Nanopores.
    Zhang X; Hu N; Wang Y; Zhao Y; Wang D
    Anal Chem; 2024 Jul; 96(27):11009-11017. PubMed ID: 38934578
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ionic Conduction in Biological Nanopores Created by Ultrashort9 High-Intensity Pulses.
    Qiu H; Wang X; Choi A; Xie F; Zhao W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440320
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Atomic-Scale Fluidic Diodes Based on Triangular Nanopores in Bilayer Hexagonal Boron Nitride.
    Luan B; Zhou R
    Nano Lett; 2019 Feb; 19(2):977-982. PubMed ID: 30628792
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ion current rectification in combination with ion current saturation.
    Liu GC; Song LB; Wang XH; Li CQ; Liu B; Zhao YD; Chen W
    Anal Chim Acta; 2020 Jun; 1117():35-40. PubMed ID: 32408952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.