BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35184558)

  • 1. A Series of Furimazine Derivatives for Sustained Live-Cell Bioluminescence Imaging and Application to the Monitoring of Myogenesis at the Single-Cell Level.
    Orioka M; Eguchi M; Mizui Y; Ikeda Y; Sakama A; Li Q; Yoshimura H; Ozawa T; Citterio D; Hiruta Y
    Bioconjug Chem; 2022 Mar; 33(3):496-504. PubMed ID: 35184558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel NanoLuc-type substrates with various C-6 substitutions.
    Yan C; Du L; Li M
    Bioorg Med Chem Lett; 2020 May; 30(9):127085. PubMed ID: 32171617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered Amber-Emitting Nano Luciferase and Its Use for Immunobioluminescence Imaging
    Xiong Y; Zhang Y; Li Z; Reza MS; Li X; Tian X; Ai HW
    J Am Chem Soc; 2022 Aug; 144(31):14101-14111. PubMed ID: 35913786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A slow but steady nanoLuc: R162A mutation results in a decreased, but stable, nanoLuc activity.
    Ahmed WS; Geethakumari AM; Sultana A; Fatima A; Philip AM; Uddin SMN; Biswas KH
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131864. PubMed ID: 38692549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S-Series Coelenterazine-Driven Combinatorial Bioluminescence Imaging Systems for Mammalian Cells.
    Kamiya G; Kitada N; Furuta T; Hirano T; Maki SA; Kim SB
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic Coelenterazine Derivatives and Their Application for Bioluminescence Imaging.
    Jiang T; Li M
    Methods Mol Biol; 2022; 2524():17-36. PubMed ID: 35821460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of NanoLuc substrates for bioluminescence imaging of transferred cells in mice.
    Gaspar N; Walker JR; Zambito G; Marella-Panth K; Lowik C; Kirkland TA; Mezzanotte L
    J Photochem Photobiol B; 2021 Mar; 216():112128. PubMed ID: 33529963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gram-scale synthesis of luciferins derived from coelenterazine and original insights into their bioluminescence properties.
    Coutant EP; Goyard S; Hervin V; Gagnot G; Baatallah R; Jacob Y; Rose T; Janin YL
    Org Biomol Chem; 2019 Apr; 17(15):3709-3713. PubMed ID: 30882838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Azide- and Dye-Conjugated Coelenterazine Analogues for Imaging Mammalian Cells.
    Nishihara R; Hoshino E; Kakudate Y; Suzuki K; Kim SB
    Methods Mol Biol; 2021; 2274():111-126. PubMed ID: 34050467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly bright and stable NIR-BRET with blue-shifted coelenterazine derivatives for deep-tissue imaging of molecular events
    Nishihara R; Paulmurugan R; Nakajima T; Yamamoto E; Natarajan A; Afjei R; Hiruta Y; Iwasawa N; Nishiyama S; Citterio D; Sato M; Kim SB; Suzuki K
    Theranostics; 2019; 9(9):2646-2661. PubMed ID: 31131059
    [No Abstract]   [Full Text] [Related]  

  • 11. Near-Infrared Bioluminescence Imaging of Animal Cells with Through-Bond Energy Transfer Cassette.
    Abe M; Nishihara R; Kim SB; Suzuki K
    Methods Mol Biol; 2021; 2274():103-110. PubMed ID: 34050466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C-Series Coelenterazine-Driven Bioluminescence Signature Imaging.
    Kamiya G; Kitada N; Furuta T; Hirano T; Maki S; Kim SB
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging tools for bioluminescence imaging.
    Zambito G; Chawda C; Mezzanotte L
    Curr Opin Chem Biol; 2021 Aug; 63():86-94. PubMed ID: 33770744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term single cell bioluminescence imaging with C-3 position protected coelenterazine analogues.
    Mizui Y; Eguchi M; Tanaka M; Ikeda Y; Yoshimura H; Ozawa T; Citterio D; Hiruta Y
    Org Biomol Chem; 2021 Jan; 19(3):579-586. PubMed ID: 33140803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals.
    Su Y; Walker JR; Park Y; Smith TP; Liu LX; Hall MP; Labanieh L; Hurst R; Wang DC; Encell LP; Kim N; Zhang F; Kay MA; Casey KM; Majzner RG; Cochran JR; Mackall CL; Kirkland TA; Lin MZ
    Nat Methods; 2020 Aug; 17(8):852-860. PubMed ID: 32661427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic anion transporter 1 (OAT1/SLC22A6) enhances bioluminescence based on d-luciferin-luciferase reaction in living cells by facilitating the intracellular accumulation of d-luciferin.
    Furuya T; Takehara I; Shimura A; Kishimoto H; Yasujima T; Ohta K; Shirasaka Y; Yuasa H; Inoue K
    Biochem Biophys Res Commun; 2018 Jan; 495(3):2152-2157. PubMed ID: 29273507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coelenterazine analogues emit red-shifted bioluminescence with NanoLuc.
    Shakhmin A; Hall MP; Machleidt T; Walker JR; Wood KV; Kirkland TA
    Org Biomol Chem; 2017 Oct; 15(40):8559-8567. PubMed ID: 28972606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seeing (and Using) the Light: Recent Developments in Bioluminescence Technology.
    Love AC; Prescher JA
    Cell Chem Biol; 2020 Aug; 27(8):904-920. PubMed ID: 32795417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca
    Kudryavtsev AN; Krasitskaya VV; Efremov MK; Zangeeva SV; Rogova AV; Tomilin FN; Frank LA
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crucial role of Y109 and R162 as catalytic residues of nanoKAZ: insights from molecular docking, molecular dynamics simulation, and quantum chemical investigations.
    Wu N; Duan ZQ; Ji BC; Bai YH
    J Mol Model; 2023 Aug; 29(9):295. PubMed ID: 37632522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.