These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 35184589)
1. Genotypic variation and plasticity in climate-adaptive traits after range expansion and fragmentation of red spruce ( Prakash A; DeYoung S; Lachmuth S; Adams JL; Johnsen K; Butnor JR; Nelson DM; Fitzpatrick MC; Keller SR Philos Trans R Soc Lond B Biol Sci; 2022 Apr; 377(1848):20210008. PubMed ID: 35184589 [TBL] [Abstract][Full Text] [Related]
2. Genetic and morphological structure of a spruce hybrid (Picea sitchensis x P. glauca) zone along a climatic gradient. Hamilton JA; Aitken SN Am J Bot; 2013 Aug; 100(8):1651-62. PubMed ID: 23935108 [TBL] [Abstract][Full Text] [Related]
3. Genotypic variation in phenological plasticity: Reciprocal common gardens reveal adaptive responses to warmer springs but not to fall frost. Cooper HF; Grady KC; Cowan JA; Best RJ; Allan GJ; Whitham TG Glob Chang Biol; 2019 Jan; 25(1):187-200. PubMed ID: 30346108 [TBL] [Abstract][Full Text] [Related]
4. Distinct genecological patterns in seedlings of Norway spruce and silver fir from a mountainous landscape. Frank A; Sperisen C; Howe GT; Brang P; Walthert L; St Clair JB; Heiri C Ecology; 2017 Jan; 98(1):211-227. PubMed ID: 28052396 [TBL] [Abstract][Full Text] [Related]
5. Genetic signatures of natural selection in response to air pollution in red spruce (Picea rubens, Pinaceae). Bashalkhanov S; Eckert AJ; Rajora OP Mol Ecol; 2013 Dec; 22(23):5877-89. PubMed ID: 24118331 [TBL] [Abstract][Full Text] [Related]
6. Local adaptation at the range peripheries of Sitka spruce. Mimura M; Aitken SN J Evol Biol; 2010 Feb; 23(2):249-58. PubMed ID: 20021549 [TBL] [Abstract][Full Text] [Related]
7. Risk of genetic maladaptation due to climate change in three major European tree species. Frank A; Howe GT; Sperisen C; Brang P; Clair JBS; Schmatz DR; Heiri C Glob Chang Biol; 2017 Dec; 23(12):5358-5371. PubMed ID: 28675600 [TBL] [Abstract][Full Text] [Related]
8. From common gardens to candidate genes: exploring local adaptation to climate in red spruce. Capblancq T; Lachmuth S; Fitzpatrick MC; Keller SR New Phytol; 2023 Mar; 237(5):1590-1605. PubMed ID: 36068997 [TBL] [Abstract][Full Text] [Related]
9. Drought Sensitivity of Norway Spruce at the Species' Warmest Fringe: Quantitative and Molecular Analysis Reveals High Genetic Variation Among and Within Provenances. Trujillo-Moya C; George JP; Fluch S; Geburek T; Grabner M; Karanitsch-Ackerl S; Konrad H; Mayer K; Sehr EM; Wischnitzki E; Schueler S G3 (Bethesda); 2018 Mar; 8(4):1225-1245. PubMed ID: 29440346 [TBL] [Abstract][Full Text] [Related]
10. Whole-exome sequencing reveals a long-term decline in effective population size of red spruce ( Capblancq T; Butnor JR; Deyoung S; Thibault E; Munson H; Nelson DM; Fitzpatrick MC; Keller SR Evol Appl; 2020 Oct; 13(9):2190-2205. PubMed ID: 33005218 [TBL] [Abstract][Full Text] [Related]
11. Postglacial phylogeography, admixture, and evolution of red spruce ( Bashalkhanov S; Johnson JS; Rajora OP Front Plant Sci; 2023; 14():1272362. PubMed ID: 37900752 [TBL] [Abstract][Full Text] [Related]
12. Picturing local adaptation: Spectral and structural traits from drone remote sensing reveal clinal responses to climate transfer in common-garden trials of interior spruce (Picea engelmannii × glauca). Grubinger S; Coops NC; O'Neill GA Glob Chang Biol; 2023 Sep; 29(17):4842-4860. PubMed ID: 37424219 [TBL] [Abstract][Full Text] [Related]
13. Genetic Adaptation vs. Ecophysiological Plasticity of Photosynthetic-Related Traits in Young Picea glauca Trees along a Regional Climatic Gradient. Benomar L; Lamhamedi MS; Rainville A; Beaulieu J; Bousquet J; Margolis HA Front Plant Sci; 2016; 7():48. PubMed ID: 26870067 [TBL] [Abstract][Full Text] [Related]
14. Fine-scale geographic variation in photosynthetic-related traits of Picea glauca seedlings indicates local adaptation to climate. Benomar L; Lamhamedi MS; Villeneuve I; Rainville A; Beaulieu J; Bousquet J; Margolis HA Tree Physiol; 2015 Aug; 35(8):864-78. PubMed ID: 26116923 [TBL] [Abstract][Full Text] [Related]
15. Tracking the progression of speciation: variable patterns of introgression across the genome provide insights on the species delimitation between progenitor-derivative spruces (Picea mariana × P. rubens). de Lafontaine G; Prunier J; Gérardi S; Bousquet J Mol Ecol; 2015 Oct; 24(20):5229-47. PubMed ID: 26346701 [TBL] [Abstract][Full Text] [Related]
16. Range margin populations show high climate adaptation lags in European trees. Fréjaville T; Vizcaíno-Palomar N; Fady B; Kremer A; Benito Garzón M Glob Chang Biol; 2020 Feb; 26(2):484-495. PubMed ID: 31642570 [TBL] [Abstract][Full Text] [Related]
17. Clinal adaptation and adaptive plasticity in Artemisia californica: implications for the response of a foundation species to predicted climate change. Pratt JD; Mooney KA Glob Chang Biol; 2013 Aug; 19(8):2454-66. PubMed ID: 23505064 [TBL] [Abstract][Full Text] [Related]
18. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest. Kueppers LM; Conlisk E; Castanha C; Moyes AB; Germino MJ; de Valpine P; Torn MS; Mitton JB Glob Chang Biol; 2017 Jun; 23(6):2383-2395. PubMed ID: 27976819 [TBL] [Abstract][Full Text] [Related]
19. Growth gains from selective breeding in a spruce hybrid zone do not compromise local adaptation to climate. MacLachlan IR; Yeaman S; Aitken SN Evol Appl; 2018 Feb; 11(2):166-181. PubMed ID: 29387153 [TBL] [Abstract][Full Text] [Related]
20. Phenological response to climate variation in a northern red oak plantation: Links to survival and productivity. Knott JA; Liang L; Dukes JS; Swihart RK; Fei S Ecology; 2023 Mar; 104(3):e3940. PubMed ID: 36457179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]