These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 35184589)
21. Predicting adaptive phenotypes from multilocus genotypes in Sitka spruce (Picea sitchensis) using random forest. Holliday JA; Wang T; Aitken S G3 (Bethesda); 2012 Sep; 2(9):1085-93. PubMed ID: 22973546 [TBL] [Abstract][Full Text] [Related]
22. Adaptation and exogenous selection in a Picea glauca × Picea engelmannii hybrid zone: implications for forest management under climate change. De La Torre AR; Wang T; Jaquish B; Aitken SN New Phytol; 2014 Jan; 201(2):687-699. PubMed ID: 24200028 [TBL] [Abstract][Full Text] [Related]
23. Adaptive gradients and isolation-by-distance with postglacial migration in Picea sitchensis. Mimura M; Aitken SN Heredity (Edinb); 2007 Aug; 99(2):224-32. PubMed ID: 17487214 [TBL] [Abstract][Full Text] [Related]
24. Bud phenology and growth are subject to divergent selection across a latitudinal gradient in Populus angustifolia and impact adaptation across the distributional range and associated arthropods. Evans LM; Kaluthota S; Pearce DW; Allan GJ; Floate K; Rood SB; Whitham TG Ecol Evol; 2016 Jul; 6(13):4565-81. PubMed ID: 27386097 [TBL] [Abstract][Full Text] [Related]
25. Old-growth red spruce forests as reservoirs of genetic diversity and reproductive fitness. Mosseler A; Major JE; Rajora OP Theor Appl Genet; 2003 Mar; 106(5):931-7. PubMed ID: 12647069 [TBL] [Abstract][Full Text] [Related]
26. Climate-based seed transfer of a widespread shrub: population shifts, restoration strategies, and the trailing edge. Richardson BA; Chaney L Ecol Appl; 2018 Dec; 28(8):2165-2174. PubMed ID: 30198207 [TBL] [Abstract][Full Text] [Related]
27. Adaptive limitations of white spruce populations to drought imply vulnerability to climate change in its western range. Sang Z; Sebastian-Azcona J; Hamann A; Menzel A; Hacke U Evol Appl; 2019 Oct; 12(9):1850-1860. PubMed ID: 31548862 [TBL] [Abstract][Full Text] [Related]
28. Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus). Jakoby O; Lischke H; Wermelinger B Glob Chang Biol; 2019 Dec; 25(12):4048-4063. PubMed ID: 31310430 [TBL] [Abstract][Full Text] [Related]
29. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae). Anderson JT; Gezon ZJ Glob Chang Biol; 2015 Apr; 21(4):1689-703. PubMed ID: 25470363 [TBL] [Abstract][Full Text] [Related]
30. Light-energy processing and freezing-tolerance traits in red spruce and black spruce: species and seed-source variation. Major JE; Barsi DC; Mosseler A; Campbell M; Rajora OP Tree Physiol; 2003 Jul; 23(10):685-94. PubMed ID: 12777241 [TBL] [Abstract][Full Text] [Related]
31. Disentangling the effects of acidic air pollution, atmospheric CO Mathias JM; Thomas RB Glob Chang Biol; 2018 Sep; 24(9):3938-3953. PubMed ID: 29781219 [TBL] [Abstract][Full Text] [Related]
32. Population structure and the influence of microenvironment and genetic similarity on individual growth at Alaskan white spruce treelines. Zacharias M; Pampuch T; Heer K; Avanzi C; Würth DG; Trouillier M; Bog M; Wilmking M; Schnittler M Sci Total Environ; 2021 Dec; 798():149267. PubMed ID: 34332391 [TBL] [Abstract][Full Text] [Related]
33. Survival and growth patterns of white spruce (Picea glauca [Moench] Voss) rangewide provenances and their implications for climate change adaptation. Lu P; Parker WH; Cherry M; Colombo S; Parker WC; Man R; Roubal N Ecol Evol; 2014 Jun; 4(12):2360-74. PubMed ID: 25360273 [TBL] [Abstract][Full Text] [Related]
34. Conservation and divergence of gene expression plasticity following c. 140 million years of evolution in lodgepole pine (Pinus contorta) and interior spruce (Picea glauca×Picea engelmannii). Yeaman S; Hodgins KA; Suren H; Nurkowski KA; Rieseberg LH; Holliday JA; Aitken SN New Phytol; 2014 Jul; 203(2):578-591. PubMed ID: 24750196 [TBL] [Abstract][Full Text] [Related]
35. From genotypes to phenotypes: expression levels of genes encompassing adaptive SNPs in black spruce. Prunier J; Tessier G; Bousquet J; MacKay J Plant Cell Rep; 2015 Dec; 34(12):2111-25. PubMed ID: 26260097 [TBL] [Abstract][Full Text] [Related]
36. Genetic divergence along a climate gradient shapes chemical plasticity of a foundation tree species to both changing climate and herbivore damage. Eisenring M; Best RJ; Zierden MR; Cooper HF; Norstrem MA; Whitham TG; Grady K; Allan GJ; Lindroth RL Glob Chang Biol; 2022 Aug; 28(15):4684-4700. PubMed ID: 35596651 [TBL] [Abstract][Full Text] [Related]
37. Climate change shifts natural selection and the adaptive potential of the perennial forb Boechera stricta in the Rocky Mountains. Bemmels JB; Anderson JT Evolution; 2019 Nov; 73(11):2247-2262. PubMed ID: 31584183 [TBL] [Abstract][Full Text] [Related]
38. Artificial Selection Reveals High Genetic Variation in Phenology at the Trailing Edge of a Species Range. Sheth SN; Angert AL Am Nat; 2016 Feb; 187(2):182-93. PubMed ID: 26807746 [TBL] [Abstract][Full Text] [Related]
39. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). Hamilton JA; El Kayal W; Hart AT; Runcie DE; Arango-Velez A; Cooke JE Tree Physiol; 2016 Nov; 36(11):1432-1448. PubMed ID: 27449791 [TBL] [Abstract][Full Text] [Related]
40. Local adaptations and climate change: converging sensitivity of bud break in black spruce provenances. Rossi S Int J Biometeorol; 2015 Jul; 59(7):827-35. PubMed ID: 25225116 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]