BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35184595)

  • 1. Mosaics of climatic stress across species' ranges: tradeoffs cause adaptive evolution to limits of climatic tolerance.
    Parmesan C; Singer MC
    Philos Trans R Soc Lond B Biol Sci; 2022 Apr; 377(1848):20210003. PubMed ID: 35184595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geographic mosaics of species' association: a definition and an example driven by plant-insect phenological synchrony.
    Singer MC; McBride CS
    Ecology; 2012 Dec; 93(12):2658-73. PubMed ID: 23431596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy?
    Singer MC; Parmesan C
    Philos Trans R Soc Lond B Biol Sci; 2010 Oct; 365(1555):3161-76. PubMed ID: 20819810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate-driven variation in biotic interactions provides a narrow and variable window of opportunity for an insect herbivore at its ecological margin.
    Stewart JE; Maclean IMD; Trujillo G; Bridle J; Wilson RJ
    Philos Trans R Soc Lond B Biol Sci; 2022 Apr; 377(1848):20210021. PubMed ID: 35184597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating population-level variation in thermal performance into predictions of geographic range shifts.
    Angert AL; Sheth SN; Paul JR
    Integr Comp Biol; 2011 Nov; 51(5):733-50. PubMed ID: 21705795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction to the theme issue 'Species' ranges in the face of changing environments'.
    Rafajlović M; Alexander JM; Butlin RK; Johannesson K
    Philos Trans R Soc Lond B Biol Sci; 2022 Apr; 377(1848):20210002. PubMed ID: 35184596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent range shifts of moths, butterflies, and birds are driven by the breadth of their climatic niche.
    Hällfors MH; Heikkinen RK; Kuussaari M; Lehikoinen A; Luoto M; Pöyry J; Virkkala R; Saastamoinen M; Kujala H
    Evol Lett; 2024 Feb; 8(1):89-100. PubMed ID: 38370541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The niche, limits to species' distributions, and spatiotemporal variation in demography across the elevation ranges of two monkeyflowers.
    Angert AL
    Proc Natl Acad Sci U S A; 2009 Nov; 106 Suppl 2(Suppl 2):19693-8. PubMed ID: 19805178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Illuminating geographical patterns in species' range shifts.
    Grenouillet G; Comte L
    Glob Chang Biol; 2014 Oct; 20(10):3080-91. PubMed ID: 24616088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How do phenology, plasticity, and evolution determine the fitness consequences of climate change for montane butterflies?
    Kingsolver JG; Buckley LB
    Evol Appl; 2018 Sep; 11(8):1231-1244. PubMed ID: 30151036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widespread correlations between climatic niche evolution and species diversification in birds.
    Cooney CR; Seddon N; Tobias JA
    J Anim Ecol; 2016 Jul; 85(4):869-78. PubMed ID: 27064436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of adaptive variation during evolutionary responses to climate change.
    Buckley J; Bridle JR
    Ecol Lett; 2014 Oct; 17(10):1316-25. PubMed ID: 25104062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal - A Demonstration Using Bird and Mammal Range Maps.
    Boucher-Lalonde V; Currie DJ
    PLoS One; 2016; 11(11):e0166243. PubMed ID: 27855201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion.
    Bontrager M; Usui T; Lee-Yaw JA; Anstett DN; Branch HA; Hargreaves AL; Muir CD; Angert AL
    Evolution; 2021 Jun; 75(6):1316-1333. PubMed ID: 33885152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fitness homeostasis across an experimental water gradient predicts species' geographic range and climatic breadth.
    Pearse IS; McIntyre P; Cacho NI; Strauss SY
    Ecology; 2022 Dec; 103(12):e3827. PubMed ID: 35857374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for evolutionary change associated with the recent range expansion of the British butterfly, Aricia agestis, in response to climate change.
    Buckley J; Butlin RK; Bridle JR
    Mol Ecol; 2012 Jan; 21(2):267-80. PubMed ID: 22118243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Range edges in heterogeneous landscapes: Integrating geographic scale and climate complexity into range dynamics.
    Oldfather MF; Kling MM; Sheth SN; Emery NC; Ackerly DD
    Glob Chang Biol; 2020 Mar; 26(3):1055-1067. PubMed ID: 31674701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change hastens population extinctions.
    McLaughlin JF; Hellmann JJ; Boggs CL; Ehrlich PR
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):6070-4. PubMed ID: 11972020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fitness declines towards range limits and local adaptation to climate affect dispersal evolution during climate-induced range shifts.
    Hargreaves AL; Bailey SF; Laird RA
    J Evol Biol; 2015 Aug; 28(8):1489-501. PubMed ID: 26079367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Dispersal Evolution and Local Adaptation Affect the Range Dynamics of Species Lagging Behind Climate Change.
    Block S; Levine JM
    Am Nat; 2021 Jun; 197(6):E173-E187. PubMed ID: 33989146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.