BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35184699)

  • 1. Potential phytoremediation system using macrophyte
    Martino LJ; Fernández San Juan MR; Angelo C
    Environ Technol; 2023 Aug; 44(18):2770-2780. PubMed ID: 35184699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoextraction of Pb, Cr, Ni, and Zn using the aquatic plant Limnobium laevigatum and its potential use in the treatment of wastewater.
    Arán DS; Harguinteguy CA; Fernandez-Cirelli A; Pignata ML
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18295-18308. PubMed ID: 28639015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of Metal Pollution in Sediment and Macrophytes of Varthur Lake, Bangalore.
    Sudarshan P; Mahesh MK; Ramachandra TV
    Bull Environ Contam Toxicol; 2020 Apr; 104(4):411-417. PubMed ID: 32152684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecological risk assessment of metals in sediments and selective plants of Uchalli Wetland Complex (UWC)-a Ramsar site.
    Bhatti SG; Tabinda AB; Yasin F; Mehmood A; Salman M; Yasar A; Rasheed R; Wajahat R
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19136-19152. PubMed ID: 30972684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced bioremediation of heavy metals and bioelectricity generation in a macrophyte-integrated cathode sediment microbial fuel cell (mSMFC).
    Kabutey FT; Antwi P; Ding J; Zhao QL; Quashie FK
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26829-26843. PubMed ID: 31300989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China.
    Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concentrations of some heavy metal and macroelements in sediment, water, macrophyte species, and leech (Hirudo sulukii n. sp.) from the Kara Lake, Adiyaman, Turkey.
    Keser G; Topak Y; Sevgiler Y
    Environ Monit Assess; 2020 Jan; 192(2):75. PubMed ID: 31897783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution.
    Polechońska L; Samecka-Cymerman A
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3469-80. PubMed ID: 26490926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aquatic macrophytes mediated remediation of toxic metals from moderately contaminated industrial effluent.
    Saraswat S; Rai DJPN
    Int J Phytoremediation; 2018 Jul; 20(9):876-884. PubMed ID: 29873544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitigating sediment cadmium contamination through combining PGPR Enterobacter ludwigii with the submerged macrophyte Vallisneria natans.
    Liu X; Guo Y; Li Y; Li Q; Yao L; Yu J; Chen H; Wu K; Qiu D; Wu Z; Zhou Q
    J Hazard Mater; 2024 Jul; 473():134662. PubMed ID: 38788574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaccumulation and growth characteristics of Vallisneria natans (Lour.) Hara after chronic exposure to metal-contaminated sediments.
    Qian Y; Cheng C; Drouillard K; Zhu Q; Feng H; He S; Fang Y; Qiao S; Kolenčíka M; Chang X
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20510-20519. PubMed ID: 31102223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata.
    Dixit S; Dhote S
    Environ Monit Assess; 2010 Oct; 169(1-4):367-74. PubMed ID: 19890730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments.
    Cicero-Fernández D; Peña-Fernández M; Expósito-Camargo JA; Antizar-Ladislao B
    Int J Phytoremediation; 2016; 18(6):575-82. PubMed ID: 26375048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resuspension of sediment, a new approach for remediation of contaminated sediment.
    Pourabadehei M; Mulligan CN
    Environ Pollut; 2016 Jun; 213():63-75. PubMed ID: 26874876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore.
    Ramachandra TV; Sudarshan PB; Mahesh MK; Vinay S
    J Environ Manage; 2018 Jan; 206():1204-1210. PubMed ID: 29157887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation Competence of Composite Heavy-Metal-Contaminated Sediments by Intercropping
    Li Y; Song Y; Zhang J; Wan Y
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of metals in selected macrophytes grown in mixture of drain water and tannery effluent and their phytoremediation potential.
    Kumar N; Bauddh K; Dwivedi N; Barman SC; Singh DP
    J Environ Biol; 2012 Sep; 33(5):923-7. PubMed ID: 23734460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pollution and Potential Ecological Risk Evaluation of Heavy Metals in the Bottom Sediments: A Case Study of Eutrophic Bukwałd Lake Located in an Agricultural Catchment.
    Sidoruk M
    Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Historical accumulation and ecological risk assessment of heavy metals in sediments of a drinking water lake.
    Wang G; Hu X; Zhu Y; Jiang H; Wang H
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):24882-24894. PubMed ID: 29931636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal and spatial variability of heavy metals in bottom sediments and the aquatic macrophyte Paspalum repens of the Orinoco River floodplain lagoons impacted by industrial activities.
    Narayan A; Mora A; Sánchez L; Rosales J
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):37074-37086. PubMed ID: 32583105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.