These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35184797)

  • 1. Altering natural photosynthesis through quantum dots: effect of quantum dots on viability, light harvesting capacity and growth of photosynthetic organisms.
    Ünlü C; Budak E; Kestir SM
    Funct Plant Biol; 2022 May; 49(6):444-451. PubMed ID: 35184797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced fluorescence of photosynthetic pigments through conjugation with carbon quantum dots.
    Budak E; Erdoğan D; Ünlü C
    Photosynth Res; 2021 Jan; 147(1):1-10. PubMed ID: 33034816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of different isolated photosynthetic light harvesting complexes and CdSe/ZnS nanocrystals via Förster resonance energy transfer.
    Schmitt FJ; Maksimov EG; Hätti P; Weißenborn J; Jeyasangar V; Razjivin AP; Paschenko VZ; Friedrich T; Renger G
    Biochim Biophys Acta; 2012 Aug; 1817(8):1461-70. PubMed ID: 22503663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From coherent to vibronic light harvesting in photosynthesis.
    Jumper CC; Rafiq S; Wang S; Scholes GD
    Curr Opin Chem Biol; 2018 Dec; 47():39-46. PubMed ID: 30077962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design principles of photosynthetic light-harvesting.
    Fleming GR; Schlau-Cohen GS; Amarnath K; Zaks J
    Faraday Discuss; 2012; 155():27-41; discussion 103-14. PubMed ID: 22470965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast Dynamics of Photosynthetic Light Harvesting: Strategies for Acclimation Across Organisms.
    Fiebig OC; Harris D; Wang D; Hoffmann MP; Schlau-Cohen GS
    Annu Rev Phys Chem; 2023 Apr; 74():493-520. PubMed ID: 36791782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carotenoids and Photosynthesis.
    Hashimoto H; Uragami C; Cogdell RJ
    Subcell Biochem; 2016; 79():111-39. PubMed ID: 27485220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexes.
    Pachón LA; Brumer P
    Phys Chem Chem Phys; 2012 Aug; 14(29):10094-108. PubMed ID: 22735237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation.
    Oka H
    Sci Rep; 2016 May; 6():26058. PubMed ID: 27173144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.
    Hildner R; Brinks D; Nieder JB; Cogdell RJ; van Hulst NF
    Science; 2013 Jun; 340(6139):1448-51. PubMed ID: 23788794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms.
    Mirkovic T; Ostroumov EE; Anna JM; van Grondelle R; Govindjee ; Scholes GD
    Chem Rev; 2017 Jan; 117(2):249-293. PubMed ID: 27428615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions.
    Lokstein H; Renger G; Götze JP
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34204994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Pulse Shaping on Observing Coherent Energy Transfer in Single Light-Harvesting Complexes.
    Song K; Bai S; Shi Q
    J Phys Chem B; 2016 Nov; 120(45):11637-11643. PubMed ID: 27749066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer.
    Ishizaki A; Calhoun TR; Schlau-Cohen GS; Fleming GR
    Phys Chem Chem Phys; 2010 Jul; 12(27):7319-37. PubMed ID: 20544102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating spectral response of raw photosynthetic pigments via ternary cadmium chalcogenide quantum dots: simultaneous enhancement at green spectrum and inhibition at UV region.
    Aykut S; Ük N; Coşkun İY; Keskin SŞ; Nar I; Trabzon L; Ünlü C
    Photosynth Res; 2024 Apr; 160(1):1-16. PubMed ID: 38407778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosynthetic Energy Transfer at the Quantum/Classical Border.
    Keren N; Paltiel Y
    Trends Plant Sci; 2018 Jun; 23(6):497-506. PubMed ID: 29625851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic quantum coherence in a photosynthetic-light-harvesting antenna.
    Dawlaty JM; Ishizaki A; De AK; Fleming GR
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3672-91. PubMed ID: 22753820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent carbon-dots enhance light harvesting and photosynthesis by overexpressing PsbP and PsiK genes.
    Wang Y; Xie Z; Wang X; Peng X; Zheng J
    J Nanobiotechnology; 2021 Aug; 19(1):260. PubMed ID: 34454524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent quantum dots as artificial antennas for enhanced light harvesting and energy transfer to photosynthetic reaction centers.
    Nabiev I; Rakovich A; Sukhanova A; Lukashev E; Zagidullin V; Pachenko V; Rakovich YP; Donegan JF; Rubin AB; Govorov AO
    Angew Chem Int Ed Engl; 2010 Sep; 49(40):7217-21. PubMed ID: 20740512
    [No Abstract]   [Full Text] [Related]  

  • 20. In situ mapping of the energy flow through the entire photosynthetic apparatus.
    Dostál J; Pšenčík J; Zigmantas D
    Nat Chem; 2016 Jul; 8(7):705-10. PubMed ID: 27325098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.