BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35185594)

  • 1. Optimal Classification of Atrial Fibrillation and Congestive Heart Failure Using Machine Learning.
    Fuadah YN; Lim KM
    Front Physiol; 2021; 12():761013. PubMed ID: 35185594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Congestive heart failure detection using random forest classifier.
    Masetic Z; Subasi A
    Comput Methods Programs Biomed; 2016 Jul; 130():54-64. PubMed ID: 27208521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale sample entropy based on discrete wavelet transform for clinical heart rate variability recognition.
    Lee MY; Yu SN
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4299-302. PubMed ID: 23366878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic ECG features for atrial fibrillation recognition.
    Abdul-Kadir NA; Mat Safri N; Othman MA
    Comput Methods Programs Biomed; 2016 Nov; 136():143-50. PubMed ID: 27686711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG Signal Analysis for Diagnosing Neurological Disorders Using Discrete Wavelet Transform and Intelligent Techniques.
    Alturki FA; AlSharabi K; Abdurraqeeb AM; Aljalal M
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32354161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of normal sinus rhythm, abnormal arrhythmia and congestive heart failure ECG signals using LSTM and hybrid CNN-SVM deep neural networks.
    Çınar A; Tuncer SA
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(2):203-214. PubMed ID: 32955928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Density Poincaré Plot Based Machine Learning Method to Detect Atrial Fibrillation From Premature Atrial/Ventricular Contractions.
    Bashar SK; Han D; Zieneddin F; Ding E; Fitzgibbons TP; Walkey AJ; McManus DD; Javidi B; Chon KH
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):448-460. PubMed ID: 32746035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medical Decision Support System for Diagnosis of Heart Arrhythmia using DWT and Random Forests Classifier.
    Alickovic E; Subasi A
    J Med Syst; 2016 Apr; 40(4):108. PubMed ID: 26922592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of electrocardiogram signals using deep learning based on genetic algorithm feature extraction.
    Khezripour H; Mozaffari SP; Reshadi M; Zarrabi H
    Biomed Phys Eng Express; 2023 Jul; 9(5):. PubMed ID: 37285819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-scale and multi-domain heart sound feature-based machine learning model for ACC/AHA heart failure stage classification.
    Zheng Y; Guo X; Wang Y; Qin J; Lv F
    Physiol Meas; 2022 Jun; 43(6):. PubMed ID: 35512699
    [No Abstract]   [Full Text] [Related]  

  • 11. Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm.
    Ashtiyani M; Navaei Lavasani S; Asgharzadeh Alvar A; Deevband MR
    J Biomed Phys Eng; 2018 Dec; 8(4):423-434. PubMed ID: 30568932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grasshopper optimization algorithm-based approach for the optimization of ensemble classifier and feature selection to classify epileptic EEG signals.
    Singh G; Singh B; Kaur M
    Med Biol Eng Comput; 2019 Jun; 57(6):1323-1339. PubMed ID: 30756231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2s of ECG signals.
    Sudarshan VK; Acharya UR; Oh SL; Adam M; Tan JH; Chua CK; Chua KP; Tan RS
    Comput Biol Med; 2017 Apr; 83():48-58. PubMed ID: 28231511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of Visual and Non-visual Learners Using Electroencephalographic Alpha and Gamma Activities.
    Jawed S; Amin HU; Malik AS; Faye I
    Front Behav Neurosci; 2019; 13():86. PubMed ID: 31133829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rules extraction in SVM and neural network classifiers of atrial fibrillation patients with matched wavelets as a feature generator.
    Kostka PS; Tkacz EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4691-4. PubMed ID: 19964831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atrial Fibrillation Prediction from Critically Ill Sepsis Patients.
    Bashar SK; Ding EY; Walkey AJ; McManus DD; Chon KH
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RR Interval-based Atrial Fibrillation Detection using Traditional and Ensemble Machine Learning Algorithms.
    Rao SKS; Martis RJ
    J Med Signals Sens; 2023; 13(3):224-232. PubMed ID: 37622040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature extraction based on time-frequency and Independent Component Analysis for improvement of separation ability in Atrial Fibrillation detector.
    Kostka PS; Tkacz EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2960-3. PubMed ID: 19163327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated detection of congestive heart failure from electrocardiogram signal using Stockwell transform and hybrid classification scheme.
    Tripathy RK; Paternina MRA; Arrieta JG; Zamora-Méndez A; Naik GR
    Comput Methods Programs Biomed; 2019 May; 173():53-65. PubMed ID: 31046996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated detection of severity of hypertension ECG signals using an optimal bi-orthogonal wavelet filter bank.
    Rajput JS; Sharma M; Tan RS; Acharya UR
    Comput Biol Med; 2020 Aug; 123():103924. PubMed ID: 32768053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.