These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35185810)

  • 1. Permafrost Active Layer Microbes From Ny Ålesund, Svalbard (79°N) Show Autotrophic and Heterotrophic Metabolisms With Diverse Carbon-Degrading Enzymes.
    Sipes K; Paul R; Fine A; Li P; Liang R; Boike J; Onstott TC; Vishnivetskaya TA; Schaeffer S; Lloyd KG
    Front Microbiol; 2021; 12():757812. PubMed ID: 35185810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total nitrogen influence bacterial community structure of active layer permafrost across summer and winter seasons in Ny-Ålesund, Svalbard.
    Loganathachetti DS; Venkatachalam S; Jabir T; Vipindas PV; Krishnan KP
    World J Microbiol Biotechnol; 2022 Jan; 38(2):28. PubMed ID: 34989908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metagenome-assembled genome distribution and key functionality highlight importance of aerobic metabolism in Svalbard permafrost.
    Xue Y; Jonassen I; Øvreås L; Taş N
    FEMS Microbiol Ecol; 2020 May; 96(5):. PubMed ID: 32301987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.
    Hicks Pries CE; van Logtestijn RS; Schuur EA; Natali SM; Cornelissen JH; Aerts R; Dorrepaal E
    Glob Chang Biol; 2015 Dec; 21(12):4508-19. PubMed ID: 26150277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ(13) C and ∆(14) C.
    Hicks Pries CE; Schuur EA; Crummer KG
    Glob Chang Biol; 2013 Feb; 19(2):649-61. PubMed ID: 23504799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of soil microbes and enzymes to long-term warming incubation in different depths of permafrost peatland soil.
    Song Y; Sun L; Song C; Li M; Liu Z; Zhu M; Chen S; Yuan J; Gao J; Wang X; Wang W
    Sci Total Environ; 2023 Nov; 900():165733. PubMed ID: 37490945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra.
    Blok D; Faucherre S; Banyasz I; Rinnan R; Michelsen A; Elberling B
    Glob Chang Biol; 2018 Jun; 24(6):2660-2672. PubMed ID: 29235209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited sensitivity of permafrost soils to heavy rainfall across Svalbard ecosystems.
    Magnússon RÍ; Schuuring S; Hamm A; Verhoeven MA; Limpens J; Loonen MJEE; Lang SI
    Sci Total Environ; 2024 Sep; 943():173696. PubMed ID: 38848905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms.
    Tveit A; Schwacke R; Svenning MM; Urich T
    ISME J; 2013 Feb; 7(2):299-311. PubMed ID: 22955232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.
    Abbott BW; Jones JB
    Glob Chang Biol; 2015 Dec; 21(12):4570-87. PubMed ID: 26301544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats.
    Treat CC; Wollheim WM; Varner RK; Grandy AS; Talbot J; Frolking S
    Glob Chang Biol; 2014 Aug; 20(8):2674-86. PubMed ID: 24616169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Draft Genome Sequences of 10 Pseudomonas sp. Isolates from the Active Layer of Permafrost in Ny Ålesund, Svalbard, Norway.
    Sipes K; Paul R; Onstott TC; Vishnivetskaya TA; Lloyd KG
    Microbiol Resour Announc; 2022 Jun; 11(6):e0020122. PubMed ID: 35575557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Metagenomics of the Active Layer and Permafrost from Low-Carbon Soil in the Canadian High Arctic.
    Wu X; Chauhan A; Layton AC; Lau Vetter MCY; Stackhouse BT; Williams DE; Whyte L; Pfiffner SM; Onstott TC; Vishnivetskaya TA
    Environ Sci Technol; 2021 Sep; 55(18):12683-12693. PubMed ID: 34472853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics.
    Koven CD; Lawrence DM; Riley WJ
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3752-7. PubMed ID: 25775603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment.
    Nowinski NS; Taneva L; Trumbore SE; Welker JM
    Oecologia; 2010 Jul; 163(3):785-92. PubMed ID: 20084398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses.
    Yergeau E; Hogues H; Whyte LG; Greer CW
    ISME J; 2010 Sep; 4(9):1206-14. PubMed ID: 20393573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permafrost carbon-climate feedbacks accelerate global warming.
    Koven CD; Ringeval B; Friedlingstein P; Ciais P; Cadule P; Khvorostyanov D; Krinner G; Tarnocai C
    Proc Natl Acad Sci U S A; 2011 Sep; 108(36):14769-74. PubMed ID: 21852573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial communities in ancient permafrost profiles of Svalbard, Arctic.
    Singh P; Singh SM; Singh RN; Naik S; Roy U; Srivastava A; Bölter M
    J Basic Microbiol; 2017 Dec; 57(12):1018-1036. PubMed ID: 28940222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecosystem development and carbon cycle on a glacier foreland in the high Arctic, Ny-Alesund, Svalbard.
    Nakatsubo T; Bekku YS; Uchida M; Muraoka H; Kume A; Ohtsuka T; Masuzawa T; Kanda H; Koizumi H
    J Plant Res; 2005 Jun; 118(3):173-9. PubMed ID: 15917988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10 years of experimental permafrost warming.
    Pegoraro EF; Mauritz ME; Ogle K; Ebert CH; Schuur EAG
    Glob Chang Biol; 2021 Mar; 27(6):1293-1308. PubMed ID: 33305441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.