These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

858 related articles for article (PubMed ID: 35186111)

  • 1. A Risk Score Signature Consisting of Six Immune Genes Predicts Overall Survival in Patients with Lower-Grade Gliomas.
    Wu Y; Peng Z; Gu S; Wang H; Xiang W
    Comput Math Methods Med; 2022; 2022():2558548. PubMed ID: 35186111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Immune-Related Signature for Predicting the Prognosis of Lower-Grade Gliomas.
    Zhang H; Li X; Li Y; Chen B; Zong Z; Shen L
    Front Immunol; 2020; 11():603341. PubMed ID: 33363544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An autophagic gene-based signature to predict the survival of patients with low-grade gliomas.
    Chen J; Li Y; Han X; Pan Y; Qian X
    Cancer Med; 2021 Mar; 10(5):1848-1859. PubMed ID: 33591634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Validation of an Energy Metabolism-Related lncRNA-mRNA Signature for Lower-Grade Glioma.
    Zhao J; Wang L; Wei B
    Biomed Res Int; 2020; 2020():3708231. PubMed ID: 32802843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferroptosis-related gene signature correlates with the tumor immune features and predicts the prognosis of glioma patients.
    Hu Y; Tu Z; Lei K; Huang K; Zhu X
    Biosci Rep; 2021 Dec; 41(12):. PubMed ID: 34726238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a novel mRNA-signature prediction model for prognosis of bladder cancer based on a statistical analysis.
    Li J; Cao J; Li P; Yao Z; Deng R; Ying L; Tian J
    BMC Cancer; 2021 Jul; 21(1):858. PubMed ID: 34315402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prognostic and predictive value of an immune infiltration signature in diffuse lower-grade gliomas.
    Song LR; Weng JC; Li CB; Huo XL; Li H; Hao SY; Wu Z; Wang L; Li D; Zhang JT
    JCI Insight; 2020 Mar; 5(8):. PubMed ID: 32229719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and validation of a risk signature based on extracellular matrix-related genes in gliomas.
    Liu J; Li G
    Medicine (Baltimore); 2021 Apr; 100(16):e25603. PubMed ID: 33879726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic identification, development, and validation of prognostic biomarkers involving the tumor-immune microenvironment for glioblastoma.
    Zhao B; Wang Y; Wang Y; Chen W; Liu PH; Kong Z; Dai C; Wang Y; Ma W
    J Cell Physiol; 2021 Jan; 236(1):507-522. PubMed ID: 32572951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and validation of a 21-mRNA prognostic signature in diffuse lower-grade gliomas.
    Song LR; Weng JC; Huo XL; Wang L; Li H; Li D; Wu Z; Zhang JT
    J Neurooncol; 2020 Jan; 146(1):207-217. PubMed ID: 31853837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and validation of a novel eight mutant-derived long non-coding RNAs signature as a prognostic biomarker for genome instability in low-grade glioma.
    Maimaiti A; Wang X; Pei Y; Nuermaimaiti N; Tuersunniyazi A; Abula Y; Feng Z; Jiang L; Shi X; Kasimu M
    Aging (Albany NY); 2021 Jun; 13(11):15164-15192. PubMed ID: 34081618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CKS2 (CDC28 protein kinase regulatory subunit 2) is a prognostic biomarker in lower grade glioma: a study based on bioinformatic analysis and immunohistochemistry.
    Hu M; Li Z; Qiu J; Zhang R; Feng J; Hu G; Ren J
    Bioengineered; 2021 Dec; 12(1):5996-6009. PubMed ID: 34494924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and validation of an individualized prognostic signature of lower-grade glioma based on nine immune related long non-coding RNA.
    Maimaiti A; Jiang L; Wang X; Shi X; Pei Y; Hao Y; Paerhati H; Zibibula Y; Abudujielili A; Kasimu M
    Clin Neurol Neurosurg; 2021 Feb; 201():106464. PubMed ID: 33454543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cuproptosis-related gene-located DNA methylation in lower-grade glioma: Prognosis and tumor microenvironment.
    Zhu L; Yuan F; Wang X; Zhu R; Guo W
    Cancer Biomark; 2024; 40(2):185-198. PubMed ID: 38578883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of an Immune-Related Gene Signature for Risk Stratification for Patients with Glioma.
    He J; Zeng C; Long Y
    Comput Math Methods Med; 2021; 2021():2191709. PubMed ID: 34497663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel 10-Gene Signature Predicts Poor Prognosis in Low Grade Glioma.
    Liu W; Zou J; Ren R; Liu J; Zhang G; Wang M
    Technol Cancer Res Treat; 2021; 20():1533033821992084. PubMed ID: 33550903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Immune-Related Gene Signature for Risk Stratification and Prognosis of Survival in Lower-Grade Glioma.
    Zhang M; Wang X; Chen X; Zhang Q; Hong J
    Front Genet; 2020; 11():363. PubMed ID: 32351547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel pyroptosis-related gene signature predicts the prognosis of glioma through immune infiltration.
    Zhang M; Cheng Y; Xue Z; Sun Q; Zhang J
    BMC Cancer; 2021 Dec; 21(1):1311. PubMed ID: 34876094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A five-microRNA signature for individualized prognosis evaluation and radiotherapy guidance in patients with diffuse lower-grade glioma.
    Zhang JH; Hou R; Pan Y; Gao Y; Yang Y; Tian W; Zhu YB
    J Cell Mol Med; 2020 Jul; 24(13):7504-7514. PubMed ID: 32412186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative analysis of multi-omics data reveals a pseudouridine-related lncRNA signature for prediction of glioma prognosis and chemoradiotherapy sensitivity.
    Yang Y; Wang F; Teng H; Zhang C; Zhang Y; Chen P; Li Q; Kan X; Chen Z; Wang Z; Yu Y
    Comput Biol Med; 2023 Nov; 166():107428. PubMed ID: 37748218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.