These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3518614)

  • 1. The role of osmotic forces in exocytosis from adrenal chromaffin cells.
    Holz RW
    Annu Rev Physiol; 1986; 48():175-89. PubMed ID: 3518614
    [No Abstract]   [Full Text] [Related]  

  • 2. The chromaffin granule: recent studies leading to a functional model for exocytosis.
    Zinder O; Pollard HB
    Essays Neurochem Neuropharmacol; 1980; 4():125-62. PubMed ID: 6993206
    [No Abstract]   [Full Text] [Related]  

  • 3. Control of exocytosis from adrenal chromaffin cells.
    Holz RW
    Physiologist; 1985 Aug; 28(4):241-7. PubMed ID: 2413492
    [No Abstract]   [Full Text] [Related]  

  • 4. The chromaffin granule - plasma membrane interaction as a model for exocytosis: quantitative release of the soluble granular content.
    Konings F; De Potter W
    Biochem Biophys Res Commun; 1982 Jan; 104(1):254-8. PubMed ID: 7073671
    [No Abstract]   [Full Text] [Related]  

  • 5. Digitonin-permeabilized cells are exocytosis competent.
    Schäfer T; Karli UO; Gratwohl EK; Schweizer FE; Burger MM
    J Neurochem; 1987 Dec; 49(6):1697-707. PubMed ID: 3500275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cell-free interaction between chromaffin granules and plasma membranes: an in vitro model for exocytosis?
    De Block J; De Potter W
    Biochem Biophys Res Commun; 1987 Oct; 148(2):896-7. PubMed ID: 3689379
    [No Abstract]   [Full Text] [Related]  

  • 7. Chemiosmotic hypotheses of exocytosis: a critique. Review.
    Baker PF; Knight DE
    Biosci Rep; 1984 Apr; 4(4):285-98. PubMed ID: 6329352
    [No Abstract]   [Full Text] [Related]  

  • 8. A role for sialic acid containing substrates in the exocytosis-like in vitro interaction between adrenal medullary plasma membranes and chromaffin granules.
    Konings F; De Potter W
    Biochem Biophys Res Commun; 1982 Jun; 106(4):1191-5. PubMed ID: 6180748
    [No Abstract]   [Full Text] [Related]  

  • 9. Dissection of stages in exocytosis in the adrenal chromaffin cell with use of trifluoperazine.
    Burgoyne RD; Geisow MJ; Barron J
    Proc R Soc Lond B Biol Sci; 1982 Aug; 216(1202):111-5. PubMed ID: 6137823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of exocytosis by intracellularly applied antibodies against a chromaffin granule-binding protein.
    Schweizer FE; Schäfer T; Tapparelli C; Grob M; Karli UO; Heumann R; Thoenen H; Bookman RJ; Burger MM
    Nature; 1989 Jun; 339(6227):709-12. PubMed ID: 2765027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of adenosine triphosphate and adenosine triphosphatase in the release of catecholamines from the adrenal medulla. 3. Similarities between the effects of adenosine triphosphate on chromaffin granules and on mitochondria.
    Poisner AM; Trifaró JM
    Mol Pharmacol; 1969 May; 5(3):294-9. PubMed ID: 4239374
    [No Abstract]   [Full Text] [Related]  

  • 12. Different osmotic stability of two storage pools of adrenomedullary catecholamines: possible relevance to exocytotic release of the hormones.
    Serck-Hanssen G
    Acta Physiol Scand; 1984 Jan; 120(1):137-40. PubMed ID: 6720322
    [No Abstract]   [Full Text] [Related]  

  • 13. Anti-alpha-fodrin inhibits secretion from permeabilized chromaffin cells.
    Perrin D; Langley OK; Aunis D
    Nature; 1987 Apr 2-8; 326(6112):498-501. PubMed ID: 3561488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysis of chromaffin granules by phospholipase A2-treated plasma membranes. A cell-free model for exocytosis in adrenal medulla.
    Izumi F; Yanagihara N; Wada A; Toyohira Y; Kobayashi H
    FEBS Lett; 1986 Feb; 196(2):349-52. PubMed ID: 3949007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chromaffin granule proton pump and calcium-dependent exocytosis in bovine adrenal medullary cells.
    Knight DE; Baker PF
    J Membr Biol; 1985; 83(1-2):147-56. PubMed ID: 3873539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro interaction between bovine adrenal medullary cell membranes and chromaffin granules: protein phosphorylation and ATP requirement.
    Konings F; De Potter W
    Arch Int Pharmacodyn Ther; 1983 Apr; 262(2):315-6. PubMed ID: 6870395
    [No Abstract]   [Full Text] [Related]  

  • 17. Mechanism of calcium action and release of vesicle-bound hormones during exocytosis.
    Pollard HB; Pazoles CJ; Creutz CE
    Recent Prog Horm Res; 1981; 37():299-332. PubMed ID: 6456530
    [No Abstract]   [Full Text] [Related]  

  • 18. Acetylcholine-induced in vitro fusion between cell membrane vesicles and chromaffin granules from the bovine adrenal medulla.
    Lelkes PI; Lavie E; Naquira D; Schneeweiss F; Schneider AS; Rosenheck K
    FEBS Lett; 1980 Jun; 115(1):129-33. PubMed ID: 7389913
    [No Abstract]   [Full Text] [Related]  

  • 19. Further characterization of the aggregation and fusion of chromaffin granules by synexin as a model for compound exocytosis.
    Creutz CE; Scott JH; Pazoles CJ; Pollard HB
    J Cell Biochem; 1982; 18(1):87-97. PubMed ID: 6121822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH modulation of large conductance potassium channel from adrenal chromaffin granules.
    Hordejuk R; Lobanov NA; Kicinska A; Szewczyk A; Dolowy K
    Mol Membr Biol; 2004; 21(5):307-13. PubMed ID: 15513738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.