BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35186472)

  • 1. Using virtual reality for anatomical landmark annotation in geometric morphometrics.
    Messer D; Atchapero M; Jensen MB; Svendsen MS; Galatius A; Olsen MT; Frisvad JR; Dahl VA; Conradsen K; Dahl AB; Bærentzen A
    PeerJ; 2022; 10():e12869. PubMed ID: 35186472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement error using a SeeMaLab structured light 3D scanner against a Microscribe 3D digitizer.
    Messer D; Svendsen MS; Galatius A; Olsen MT; Dahl VA; Conradsen K; Dahl AB
    PeerJ; 2021; 9():e11804. PubMed ID: 34484981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D virtual reality vs. 2D desktop registration user interface comparison.
    Bueckle A; Buehling K; Shih PC; Börner K
    PLoS One; 2021; 16(10):e0258103. PubMed ID: 34705835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital restoration of fragmentary human skeletal remains: Testing the feasibility of virtual reality.
    Jurda M; Urbanová P; Chmelík J
    J Forensic Leg Med; 2019 Aug; 66():50-57. PubMed ID: 31220789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual dissection of the real brain: integration of photographic 3D models into virtual reality and its effect on neurosurgical resident education.
    Roh TH; Oh JW; Jang CK; Choi S; Kim EH; Hong CK; Kim SH
    Neurosurg Focus; 2021 Aug; 51(2):E16. PubMed ID: 34333482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing virtual reality, desktop-based 3D, and 2D versions of a category learning experiment.
    Barrett RCA; Poe R; O'Camb JW; Woodruff C; Harrison SM; Dolguikh K; Chuong C; Klassen AD; Zhang R; Joseph RB; Blair MR
    PLoS One; 2022; 17(10):e0275119. PubMed ID: 36201546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of virtual reality to assess the bony landmarks at the knee joint - The role of imaging modality and the assessor's experience.
    Castille J; Remy S; Vermue H; Victor J
    Knee; 2024 Jan; 46():41-51. PubMed ID: 38061164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic landmark annotation in 3D surface scans of skulls: Methodological proposal and reliability study.
    Bermejo E; Taniguchi K; Ogawa Y; Martos R; Valsecchi A; Mesejo P; Ibáñez O; Imaizumi K
    Comput Methods Programs Biomed; 2021 Oct; 210():106380. PubMed ID: 34478914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landmark Typology in Applied Morphometrics Studies: What's the Point?
    Wärmländer SKTS; Garvin H; Guyomarc'h P; Petaros A; Sholts SB
    Anat Rec (Hoboken); 2019 Jul; 302(7):1144-1153. PubMed ID: 30365240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landmark precision and reliability and accuracy of linear distances estimated by using 3D computed micro-tomography and the open-source TINA Manual Landmarking Tool software.
    Simon MN; Marroig G
    Front Zool; 2015; 12():12. PubMed ID: 26120349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can virtual reality improve traditional anatomy education programmes? A mixed-methods study on the use of a 3D skull model.
    Chen S; Zhu J; Cheng C; Pan Z; Liu L; Du J; Shen X; Shen Z; Zhu H; Liu J; Yang H; Ma C; Pan H
    BMC Med Educ; 2020 Oct; 20(1):395. PubMed ID: 33129310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing Methods to Assess Intraobserver Measurement Error of 3D Craniofacial Landmarks Using Geometric Morphometrics Through a Digitizer Arm.
    Menéndez LP
    J Forensic Sci; 2017 May; 62(3):741-746. PubMed ID: 27874192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Range-wide variation in grey seal (Halichoerus grypus) skull morphology.
    Galatius A; Svendsen MS; Messer D; Valtonen M; McGowen M; Sabin R; Dahl VA; Dahl AB; Olsen MT
    Zoology (Jena); 2022 Aug; 153():126023. PubMed ID: 35717730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reality of virtual anthropology: Comparing digitizer and laser scan data collection methods for the quantitative assessment of the cranium.
    Algee-Hewitt BF; Wheat AD
    Am J Phys Anthropol; 2016 May; 160(1):148-55. PubMed ID: 26714825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MiCellAnnGELo: annotate microscopy time series of complex cell surfaces with 3D virtual reality.
    Platt A; Lutton EJ; Offord E; Bretschneider T
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36629475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual reality simulation training for health professions trainees in gastrointestinal endoscopy.
    Khan R; Plahouras J; Johnston BC; Scaffidi MA; Grover SC; Walsh CM
    Cochrane Database Syst Rev; 2018 Aug; 8(8):CD008237. PubMed ID: 30117156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Randomized study comparing 3D virtual reality and conventional 2D on-screen teaching of cerebrovascular anatomy.
    Greuter L; De Rosa A; Cattin P; Croci DM; Soleman J; Guzman R
    Neurosurg Focus; 2021 Aug; 51(2):E18. PubMed ID: 34333473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creating 3D models from Radiologic Images for Virtual Reality Medical Education Modules.
    Ammanuel S; Brown I; Uribe J; Rehani B
    J Med Syst; 2019 May; 43(6):166. PubMed ID: 31053902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Principles and methods of geometric morphometrics].
    Pavlinov IIa; Mikeshina NG
    Zh Obshch Biol; 2002; 63(6):473-93. PubMed ID: 12510587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PTVR - A software in Python to make virtual reality experiments easier to build and more reproducible.
    Castet E; Termoz-Masson J; Vizcay S; Delachambre J; Myrodia V; Aguilar C; Matonti F; Kornprobst P
    J Vis; 2024 Apr; 24(4):19. PubMed ID: 38652657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.